Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 15: 367-375, 2024.
Article in English | MEDLINE | ID: mdl-38590431

ABSTRACT

Desired modifications of surfaces at the nanoscale may be achieved using energetic ion beams. In the present work, a complete study of self-assembled ripple pattern fabrication on Si and Ge by 100 keV Ar+ ion beam bombardment is discussed. The irradiation was performed in the ion fluence range of ≈3 × 1017 to 9 × 1017 ions/cm2 and at an incident angle of θ ≈ 60° with respect to the surface normal. The investigation focuses on topographical studies of pattern formation using atomic force microscopy, and induced damage profiles inside Si and Ge by Rutherford backscattering spectrometry and transmission electron microscopy. The ripple wavelength was found to scale with ion fluence, and energetic ions created more defects inside Si as compared to that of Ge. Although earlier reports suggested that Ge is resistant to structural changes upon Ar+ ion irradiation, in the present case, a ripple pattern is observed on both Si and Ge. The irradiated Si and Ge targets clearly show visible damage peaks between channel numbers (1000-1100) for Si and (1500-1600) for Ge. The clustering of defects leads to a subsequent increase of the damage peak in irradiated samples (for an ion fluence of ≈9 × 1017 ions/cm2) compared to that in unirradiated samples.

2.
Environ Sci Pollut Res Int ; 27(25): 32076-32087, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32506402

ABSTRACT

An ecofriendly and solar light-responsive graphene oxide wrapped zinc oxide nanohybrid has been synthesized hydrothermally using lemon and honey respectively as chelating and complexing agents. By tuning the reaction conditions, a heterostructure between GO and ZnO has been formed during synthesis. The photocatalytic activity of the synthesized nanohybrid was investigated by degradation of hazardous organic textile dye (methylene blue) as well as wastewater under natural solar light. The nanohybrid exhibited excellent photocatalytic activity towards degradation (~ 89%) of methylene blue (MeB). Furthermore, along with decolorization, 71% of mineralization was also achieved. Interestingly, the nanohybrid has been found to be reusable up to 4 cycles without significant loss of photocatalytic activity. Along with this, the physicochemical parameters of the wastewater generated from textile industry have been also monitored before and after exposure to nanohybrid. The results revealed significant reduction in chemical oxygen demand (COD) (96.33%), biochemical oxygen demand (BOD) (96.23%), and total dissolved solids (TDS) (20.85%), suggesting its potential applicability in textile wastewater treatment.


Subject(s)
Nanocomposites , Zinc Oxide , Catalysis , Sunlight , Textiles
SELECTION OF CITATIONS
SEARCH DETAIL
...