Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 327(1): H221-H241, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38819382

ABSTRACT

Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.


Subject(s)
Cardiovascular Diseases , Disease Models, Animal , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Female , Pregnancy , Prenatal Exposure Delayed Effects , Humans , Research Design , Heart Disease Risk Factors , Risk Assessment , Reproducibility of Results , Fetal Development
2.
Biology (Basel) ; 13(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534461

ABSTRACT

The etiopathogenesis of preeclampsia, a leading hypertensive disorder of pregnancy, has been proposed to involve an abnormal circulating sex hormone profile and misexpression of placental estrogen and progesterone receptors (ER and PR, respectively). However, existing research is vastly confined to third trimester preeclamptic placentas. Consequently, the placental-uterine molecular crosstalk and the dynamic ER and PR expression pattern in the peri-conception period remain overlooked. Herein, our goal was to use the BPH/5 mouse to elucidate pre-pregnancy and early gestation Er and Pr dynamics in a preeclamptic-like uterus. BPH/5 females display low circulating estrogen concentration during proestrus, followed by early gestation hypoestrogenemia, hyperprogesteronemia, and a spontaneous preeclamptic-like phenotype. Preceding pregnancy, the gene encoding Er alpha (Erα, Esr1) is upregulated in the diestrual BPH/5 uterus. At the peak of decidualization, Esr1, Er beta (Erß, Esr2), and Pr isoform B (Pr-B) were upregulated in the BPH/5 maternal-fetal interface. At the protein level, BPH/5 females display higher percentage of decidual cells with nuclear Erα expression, as well as Pr downregulation in the decidua, luminal and glandular epithelium. In conclusion, we provide evidence of disrupted sex hormone signaling in the peri-conception period of preeclamptic-like pregnancies, potentially shedding some light onto the intricate role of sex hormone signaling at unexplored timepoints of human preeclampsia.

3.
Int J Obes (Lond) ; 48(4): 439-448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145995

ABSTRACT

Obesity is becoming a worldwide pandemic with over one billion people affected. Of women in the United States, who are of childbearing age, two-thirds of them are considered overweight/obese. Offspring of women with obesity have a greater likelihood of developing cardiometabolic disease later in life, therefore making obesity a transgenerational issue. Emerging topics such as maternal microbial dysbiosis with altered levels of bacterial phyla and maternal obesity programming offspring cardiometabolic disease are a novel area of research discussed in this review. In the authors' opinion, beneficial therapeutics will be developed from knowledge of bacterial-host interactions at the most specific level possible. Although there is an abundance of obesity-related microbiome research, it is not concise, readily available, nor easy to interpret at this time. This review details the current knowledge regarding the relationship between obesity and the gut microbiome, with an emphasis on maternal obesity.


Subject(s)
Cardiovascular Diseases , Microbiota , Obesity, Maternal , Humans , Female , Pregnancy , Dysbiosis , Obesity/therapy
4.
Biocell ; 47(9): 2051-2058, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37829603

ABSTRACT

Background: Women with obesity have higher risk of adverse pregnancy outcomes, including preeclampsia (PE). Late-gestational hypertension, aberrant fetoplacental development, and fetal growth restriction (FGR), hallmarks of PE, are observed spontaneously in BPH/5 mice. Similar to obese preeclamptic women, BPH/5 mice have higher visceral white adipose tissue (WAT) and circulating leptin. We hypothesized that attenuation of maternal obesity and serum leptin in pregnant BPH/5 mice will improve fetoplacental development by decreasing hypoxia markers and leptin expression at the maternal-fetal interface. Methods: To test this hypothesis, BPH/5 mice were fed ad libitum (lib) and pair-fed (PF) to C57 ad lib controls beginning at embryonic day (e) 0.5. Hypoxia-related genes, hypoxia inducible factor (Hif) 1α, stem cell factor (Scf), heme oxygenase-1 (Ho-1), leptin (Lep), and leptin receptor (LepR) were assessed in e7.5 implantation sites. Results: BPH/5 ad lib had 1.5 to 2-fold increase in Hif1α, Scf, and Ho-1 mRNA and a greater than 3-fold increase in leptin mRNA vs. C57 that was attenuated with PF. Exogenous leptin promoted Hif1α and Ho-1 mRNA expression in e7.5 decidua in vitro. While hypoxic conditions in vitro did not change decidual leptin mRNA. Furthermore, BPH/5 PF mice demonstrated improved fetal and placental outcomes later in gestation, with greater placental vascular area by e18.5 and attenuation of FGR. Conclusion: In conclusion, pair-feeding BPH/5 mice beginning at conception may improve placental vasculature formation via decreased leptin and hypoxia-associated markers in this model. Future investigations are needed to better determine the effect of hypoxia and leptin on pregnancy outcomes in obese pregnant women.

5.
PLoS One ; 18(6): e0287145, 2023.
Article in English | MEDLINE | ID: mdl-37294797

ABSTRACT

Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.


Subject(s)
Hypertension , Microbiota , Animals , Female , Male , Mice , Blood Pressure , Feces/microbiology , Fenbendazole/pharmacology , Fenbendazole/therapeutic use , Hypertension/drug therapy , Obesity/drug therapy , Obesity/microbiology , RNA, Ribosomal, 16S/genetics
6.
Animals (Basel) ; 13(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37370509

ABSTRACT

Placentitis is the leading cause of infectious abortion in the horse. Additionally, it can result in weak and/or growth restricted offspring. While the etiology of ascending placentitis is well described in mares, less is known regarding the pathogenesis of other types, such as nocardioform placentitis. This study aims to identify the microbial communities in different body sites of the pregnant mare in early gestation to establish a core microbiome that may be perturbed in pathologic pregnancies such as placentitis. We hypothesize that the equine placenta harbors a distinct resident microbiome in early pregnancy when characterized by metagenetics and that there will be a disparity in bacterial communities from the oral, vaginal, and fecal microbiome. Samples were collected from the oral cavity, vagina, anus, and the allantoic portion of the allantochorion ("placenta") from five pregnant mares between 96 and 120 days of gestation. The V4 region of the 16S rRNA gene was amplified for Illumina MiSeq sequencing to examine core bacterial communities present in the different body sites. Microbial community composition of the pregnant ponies by body site was significantly different (Bray-Curtis dissimilarity). The placenta was significantly different from the feces, oral cavity, and vagina. Alpha diversity measuring the Shannon diversity matrix was significant, with the body sites being a compounding variable, meaning there was a difference in richness and evenness in the different microbial communities. Feces had the greatest alpha diversity, while the oral cavity and placenta similarly had the least. In conclusion, metagenetics did reveal distinct community differences in the oral, fecal, vaginal, and placenta cavities of the horse. The equine placenta does show similarities in its microbial communities to the oral cavity. Further research needs to be completed to investigate how bacteria may be translocated to the placenta from these other body sites and how they contribute to the development of placentitis.

7.
Front Physiol ; 14: 1070426, 2023.
Article in English | MEDLINE | ID: mdl-37035685

ABSTRACT

Preeclampsia (PE) is a devastating hypertensive disorder of pregnancy closely linked to obesity. Long-term adverse outcomes may occur in offspring from preeclamptic pregnancies. Accordingly, sex-specific changes in pubertal development have been described in children from preeclamptic women, but the underlying mechanisms remain vastly unexplored. Features of PE are spontaneously recapitulated by the blood pressure high subline 5 (BPH/5) mouse model, including obesity and dyslipidemia in females before and throughout pregnancy, superimposed hypertension from late gestation to parturition and fetal growth restriction. A sexually dimorphic cardiometabolic phenotype has been described in BPH/5 offspring: while females are hyperphagic, hyperleptinemic, and overweight, with increased reproductive white adipose tissue (rWAT), males have similar food intake, serum leptin concentration, body weight and rWAT mass as controls. Herein, pubertal development and adiposity were further investigated in BPH/5 progeny. Precocious onset of puberty occurs in BPH/5 females, but not in male offspring. When reaching adulthood, the obese BPH/5 females display hypoestrogenism and hyperandrogenism. Kisspeptins, a family of peptides closely linked to reproduction and metabolism, have been previously shown to induce lipolysis and inhibit adipogenesis. Interestingly, expression of kisspeptins (Kiss1) and their cognate receptor (Kiss1r) in the adipose tissue seem to be modulated by the sex steroid hormone milieu. To further understand the metabolic-reproductive crosstalk in the BPH/5 offspring, Kiss1/Kiss1r expression in male and female rWAT were investigated. Downregulation of Kiss1/Kiss1r occurs in BPH/5 females when compared to males. Interestingly, dietary weight loss attenuated circulating testosterone concentration and rWAT Kiss1 downregulation in BPH/5 females. Altogether, the studies demonstrate reproductive abnormalities in offspring gestated in a PE-like uterus, which appear to be closely associated to the sexually dimorphic metabolic phenotype of the BPH/5 mouse model.

8.
Physiol Rep ; 10(17): e15444, 2022 09.
Article in English | MEDLINE | ID: mdl-36065848

ABSTRACT

AbstractPreeclampsia (PE) is a hypertensive disorder that impacts 2-8% of pregnant women worldwide. It is characterized by new onset hypertension during the second half of gestation and is a leading cause of maternal and fetal morbidity/mortality. Maternal obesity increases the risk of PE and is a key predictor of childhood obesity and potentially offspring cardiometabolic complications in a sex-dependent manner. The influence of the maternal obesogenic environment, with superimposed PE, on offspring development into adulthood is unknown. Obese BPH/5 mice spontaneously exhibit late-gestational hypertension, fetal demise and growth restriction, and excessive gestational weight gain. BPH/5 females have improved pregnancy outcomes when maternal weight loss via pair-feeding is imposed beginning at conception. We hypothesized that phenotypic differences between female and male BPH/5 offspring can be influenced by pair feeding BPH/5 dams during pregnancy. BPH/5 pair-fed dams have improved litter sizes and increased fetal body weights. BPH/5 offspring born to ad libitum dams have similar sex ratios, body weights, and fecal microbiome as well as increased blood pressure that is reduced in the dam pair-fed offspring. Both BPH/5 male and female offspring born to pair-fed dams have a reduction in adiposity and an altered gut microbiome, while only female offspring born to pair-fed dams have decreased circulating leptin and white adipose tissue inflammatory cytokines. These sexually dimorphic results suggest that reduction in the maternal obesogenic environment in early pregnancy may play a greater role in female BPH/5 sex-dependent cardiometabolic outcomes than males. Reprograming females may mitigate the transgenerational progression of cardiometabolic disease.


Subject(s)
Hypertension , Pre-Eclampsia , Prenatal Exposure Delayed Effects , Animals , Female , Male , Mice , Pregnancy , Body Weight , Disease Models, Animal , Weight Gain , Weight Loss
9.
Physiol Genomics ; 54(8): 319-324, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35816649

ABSTRACT

Preeclampsia (PE), a pregnancy-specific disorder, is characterized by maternal hypertension and proteinuria or another accompanying sign/symptom of multiorgan dysfunction. Maternal symptoms resolve with delivery of the baby and, importantly, the placenta. Therefore, the placenta plays a causal role in PE. However, the precise cause of abnormal placental development and/or function is unknown. Women with obesity have an increased risk of developing PE that is potentially related to the increased inflammation that accompanies increased maternal adiposity. Furthermore, inflammatory adipokines, i.e., leptin, have been linked to the development of systemic inflammation, hypertension, and other adverse outcomes associated with PE. Rodent models that recapitulate key pathophysiological features of the maternal and fetal syndrome have been used translationally to study PE. This review covers inflammatory adipokines, immune cells, and impaired placental development associated with PE in women and in rodent models of PE that use functional genomics to test causation.


Subject(s)
Hypertension , Pre-Eclampsia , Adipokines , Adipose Tissue , Female , Humans , Hypertension/complications , Inflammation/complications , Obesity , Placenta , Placentation , Pre-Eclampsia/etiology , Pregnancy
10.
J Equine Vet Sci ; 112: 103896, 2022 05.
Article in English | MEDLINE | ID: mdl-35150853

ABSTRACT

Sulpiride in vegetable shortening (VS) stimulates prolactin in horses for up to 10 days. Although effective, a pharmaceutical grade vehicle is needed for clinical application of sulpiride in horses. Sucrose acetate isobutyrate (SAIB), a hydrophobic polymer, may be an alternative to VS. Four in vivo experiments assessed the efficacy of SAIB for delivery of sulpiride, estradiol cypionate (ECP), and estradiol benzoate (EB). The first three studies utilized geldings to compare prolactin and luteinizing hormone (LH) concentrations between sulpiride delivered in VS and SAIB, and ECP or EB delivered in SAIB. Sulpiride stimulated (P < .01) prolactin similarly between vehicles. Geldings pretreated with EB had higher (P < .05) prolactin responses to sulpiride compared to ECP-treated geldings on days 5, 6 and 9. Both estradiol-sulpiride treatments stimulated LH with no differences between ECP and EB. Experiment 3 compared a simultaneous injection of EB-sulpiride to a non-simultaneous injection (one day apart) of EB-sulpiride. Prolactin was stimulated (P < .05) in both treatment groups, but the response lasted 2 days longer in geldings treated a day apart. Plasma LH increased (P < .01) in both groups equally for 10 days. Experiment 4 applied simultaneous and non-simultaneous EB-sulpiride treatments to seasonally anovulatory mares to induce ovarian activity. Prolactin and LH were stimulated similarly between treatments; however, non-simultaneously treated mares tended (P = .07) to have an ovarian response earlier. In conclusion, SAIB was a suitable vehicle for administration of estradiol and sulpiride and could be an alternative to VS for sustained-release drug delivery.


Subject(s)
Anovulation , Horse Diseases , Animals , Anovulation/veterinary , Estradiol , Female , Follicle Stimulating Hormone , Gonadotropin-Releasing Hormone , Horses , Luteinizing Hormone , Male , Prolactin , Sucrose/analogs & derivatives , Sulpiride/pharmacology
11.
Reprod Med (Basel) ; 3(4): 263-279, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37538930

ABSTRACT

Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit trophoblast cell invasion, have been implicated in the pathogenesis of early-onset PE. However, a role of kisspeptin signaling during the genesis of this syndrome has not been elucidated. Herein, we used the preeclamptic-like BPH/5 mouse model to investigate kisspeptin expression and potential upstream regulatory mechanisms in a PE-like syndrome. Expression of the kisspeptin encoding gene, Kiss1, and the 10-amino-acid kisspeptide (Kp-10), are upregulated in the non-pregnant uterus of BPH/5 females during diestrus and in the maternal-fetal interface during embryonic implantation and decidualization. Correspondingly, the dysregulation of molecular pathways downstream to kisspeptins also occurs in this mouse model. BPH/5 females have abnormal sex steroid hormone profiles during early gestation. In this study, the normalization of circulating concentrations of 17ß-estradiol (E2) and progesterone (P4) in pregnant BPH/5 females not only mitigated Kiss1 upregulation, but also rescued the expression of multiple molecules downstream to kisspeptin and ameliorated adverse fetoplacental outcomes. Those findings suggest that uterine Kiss1 upregulation occurs pre-pregnancy and persists during early gestation in a PE-like mouse model. Moreover, this study highlights the role of sex steroid hormones in uteroplacental Kiss1 dysregulation and the improvement of placentation by normalization of E2, P4 and Kiss1.

12.
Front Pediatr ; 9: 636143, 2021.
Article in English | MEDLINE | ID: mdl-34631607

ABSTRACT

Preeclampsia (PE) is a hypertensive disorder of pregnancy occurring in approximately 10% of women worldwide. While it is life threatening to both the mother and baby, the only effective treatment is delivery of the placenta and fetus, which is often preterm. Maternal obesity is a risk factor for PE, and the effects of both on offspring are long standing with increased incidence of cardiometabolic disease in adulthood. Obese BPH/5 mice spontaneously exhibit excessive gestational weight gain and late-gestational hypertension, similar to women with PE, along with fetal growth restriction and accelerated compensatory growth in female offspring. We hypothesized that BPH/5 male offspring will demonstrate cardiovascular and metabolic phenotypes similar to BPH/5 females. As previously described, BPH/5 females born to ad libitum-fed dams are overweight with hyperphagia and increased subcutaneous, peri-renal, and peri-gonadal white adipose tissue (WAT) and cardiomegaly compared to age-matched adult female controls. In this study, BPH/5 adult male mice have similar body weights and food intake compared to age-matched control mice but have increased inflammatory subcutaneous and peri-renal WAT and signs of cardiovascular disease: left ventricular hypertrophy and hypertension. Therefore, adult male BPH/5 do not completely phenocopy the cardiometabolic profile of female BPH/5 mice. Future investigations are necessary to understand the differences observed in BPH/5 male and female mice as they age. In conclusion, the impact of fetal programming due to PE has a transgenerational effect on both male and female offspring in the BPH/5 mouse model. The maternal obesogenic environment may play a role in PE pregnancy outcomes, including offspring health as they age.

13.
PLoS One ; 16(7): e0253453, 2021.
Article in English | MEDLINE | ID: mdl-34270549

ABSTRACT

Animal models that recapitulate human diseases and disorders are widely used to investigate etiology, diagnosis, and treatment of those conditions in people. Disorders during pregnancy are particularly difficult to explore as interventions in pregnant women are not easily performed. Therefore, models that allow for pre-conception investigations are advantageous for elucidating the mechanisms involved in adverse pregnancy outcomes that are responsible for both maternal and fetal morbidity, such as preeclampsia. The Blood Pressure High (BPH)/5 mouse model has been used extensively to study the pathogenesis of preeclampsia. The female BPH/5 mouse is obese with increased adiposity and borderline hypertension, both of which are exacerbated with pregnancy making it a model of superimposed preeclampsia. Thus, the BPH/5 model shares traits with a large majority of women with pre-existing conditions that predisposes them to preeclampsia. We sought to explore the genome of the BPH/5 female mouse and determine the genetic underpinnings that may contribute to preeclampsia-associated phenotypes in this model. Using a whole genome sequencing approach, we are the first to characterize the genetic mutations in BPH/5 female mice that make it unique from the closely related BPH/2 model and the normotensive background strain, C57Bl/6. We found the BPH/5 female mouse to be uniquely different from BPH/2 and C57Bl/6 mice with a genetically complex landscape. The majority of non-synonymous consequences within the coding region of BPH/5 females were missense mutations found most abundant on chromosome X when comparing BPH/5 and BPH/2, and on chromosome 8 when comparing BPH/5 to C57Bl/6. Genetic mutations in BPH/5 females largely belong to immune system-related processes, with overlap between BPH/5 and BPH/2 models. Further studies examining each gene mutation during pregnancy are warranted to determine key contributors to the BPH/5 preeclamptic-like phenotype and to identify genetic similarities to women that develop preeclampsia.


Subject(s)
Disease Models, Animal , Pre-Eclampsia/genetics , Animals , Chromosomes/genetics , Female , Hypertension/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains/genetics , Mutation, Missense/genetics , Obesity/genetics , Pregnancy
14.
Am J Physiol Regul Integr Comp Physiol ; 321(1): R41-R48, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34009045

ABSTRACT

Preeclampsia (PE) is a life-threatening human gestational syndrome with incompletely understood etiopathogenesis. The disorder has a spectrum of clinical features, likely due to a complex interaction between maternal predisposing factors and abnormalities at the maternal-fetal interface. Poor trophoblast cell invasion, inadequate uterine vascular remodeling, and placental hypoperfusion are considered as key placental events leading to PE. Kisspeptins, a family of small peptides derived from the KISS1 gene, have been implicated in the development of this syndrome. Most studies of kisspeptin expression in PE have reported an upregulation of kisspeptins and/or their cognate receptor in preeclamptic placentas. Conversely, maternal peripheral blood concentration of kisspeptins is reportedly lower in PE than in uncomplicated pregnancies. This apparent paradox remains to be further elucidated. Although kisspeptins were initially known for inhibiting cellular migration and invasion, other biological activities attributed to these peptides include neuroendocrine regulation of reproduction, metabolism regulation, inhibition of angiogenesis, and induction of apoptosis. This review summarizes the current knowledge on expression and biological activity of kisspeptins at the maternal-fetal interface in the context of PE.


Subject(s)
Apoptosis/physiology , Gene Expression Regulation/physiology , Kisspeptins/metabolism , Pre-Eclampsia/metabolism , Trophoblasts/physiology , Female , Humans , Pregnancy
15.
16.
Am J Physiol Heart Circ Physiol ; 318(1): H1-H10, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31626558

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific disorder that can be life threatening for both mother and baby. It is characterized by a new onset hypertension during the second half of pregnancy and affects ~300,000 women in the United States every year. There is no cure for PE, and the only effective treatment is delivery of the placenta and the fetus, which is often preterm. PE is believed to be a severe manifestation of placental dysfunction due to early angiogenic imbalances and inflammatory disturbances; however, the cause of this is unknown. The once thought "sterile" placenta now has been proposed to have a unique microbiome of its own. Under ideal conditions, the microbiome represents a balanced bacterial community that is important to the maintenance of a healthy environment. Dysbiosis of these communities may lead to inflammation that potentially contributes to adverse pregnancy outcomes, such as preterm birth and PE. Thus far, the female reproductive tract microbiome has been found to be influenced by periodontal disease, cardiometabolic complications, and maternal obesity, all of which have been identified as contributors to PE. This review will look at the maternal reproductive tract microbiome, evidence for and against, and its role in pregnancy and PE-related events as well as data from relevant mouse models that could be useful for further investigating the influence of the reproductive tract microbiome on the pathogenesis of PE.


Subject(s)
Blood Pressure , Microbiota , Placenta/microbiology , Pre-Eclampsia/microbiology , Uterus/microbiology , Animals , Comorbidity , Dysbiosis , Female , Host-Pathogen Interactions , Humans , Life Style , Maternal Health , Pre-Eclampsia/epidemiology , Pre-Eclampsia/physiopathology , Pregnancy , Pregnancy Outcome , Risk Factors
17.
Physiol Genomics ; 51(8): 390-399, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31251700

ABSTRACT

Since the discovery of the microbiome in humans, it has been studied in many mammalian species. Different microbiological communities with variable richness and diversity have been found among these species in distinct areas of the reproductive tract. Human studies have shown that the composition of the microbiome is dependent on body site and several host-related factors. Furthermore, specific phyla have been identified among the different species and within distinct areas of the female reproductive tract, but a "core" microbiome of the female reproductive tract has not been defined in any species. Moreover, the function of the microbiome in the reproductive tract is not yet fully understood. However, it has been suggested that a change in diversity of the microbiome and the presence or absence of specific microbial species might be useful indicators of pregnancy outcomes. Increased comprehensive knowledge of the microbiological communities in the female reproductive tract is needed since adverse outcomes represent a significant problem to many species, including livestock, exotic or endangered species, and humans. To the authors' knowledge, a review combining current female reproductive tract microbiome data among different mammalian species has not been published yet. Herein is a comprehensive review of what is known in the field of the female reproductive microbiome and how it correlates with reproductive success or failure in mammals. Further studies may lead to optimization of therapies in the treatment of reproductive tract infections and pregnancy failure, and may create opportunities for novel approaches for improving reproductive efficiency in animals and people.


Subject(s)
Genitalia, Female/microbiology , Microbiota/physiology , Placenta/microbiology , Pregnancy Outcome , Animals , Female , Fertility , Humans , Infant , Infant, Newborn , Mammals , Pregnancy
18.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R49-R58, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30995083

ABSTRACT

The hypertensive pregnancy disorder preeclampsia (PE) is a leading cause of fetal and maternal morbidity/mortality. Obesity increases the risk to develop PE, presumably via the release of inflammatory mediators from the adipose tissue, but the exact etiology remains largely unknown. Using obese PE-like blood pressure high subline 5 (BPH/5) and lean gestational age-matched C57Bl6 mice, we aimed to obtain insight into differential reproductive white adipose tissue (rWAT) gene expression, circulating lipids and inflammation at the maternal-fetal interface during early pregnancy. In addition, we investigated the effect of 7 days 25% calorie restriction (CR) in early pregnancy on gene expression in rWAT and implantation sites. Compared with C57Bl6, female BPH/5 are dyslipidemic before pregnancy and show an amplification of rWAT mass, circulating cholesterol, free fatty acids, and triacylglycerol levels throughout pregnancy. RNA sequencing showed that pregnant BPH/5 mice have elevated gene enrichment in pathways related to inflammation and cholesterol biosynthesis at embryonic day (e) 7.5. Expression of cholesterol-related HMGCS1, MVD, Cyp51a1, and DHCR was validated by quantitative reverse-transcription-polymerase chain reaction. CR during the first 7 days of pregnancy restored the relative mRNA expression of these genes to a level comparable to C57Bl6 pregnant females and reduced the expression of circulating leptin and proinflammatory prostaglandin synthase 2 in both rWAT and implantation sites in BPH/5 mice at e7.5. Our data suggest a possible role for rWAT in the dyslipidemic state and inflammatory uterine milieu that might underlie the pathogenesis of PE. Future studies should further address the physiological functioning of the adipose tissue in relation to PE-related pregnancy outcomes.


Subject(s)
Adipose Tissue, White/physiology , Adipose Tissue/physiology , Dyslipidemias/metabolism , Pre-Eclampsia , Animals , Cholesterol/biosynthesis , Female , Gene Expression Regulation , Mice , Mice, Inbred Strains , Obesity , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
19.
Am J Vet Res ; 80(3): 306-310, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30801209

ABSTRACT

OBJECTIVE To evaluate use of flunixin meglumine as a treatment to postpone ovulation in mares, mare fertility after flunixin meglumine treatment during estrous cycles, and effects of flunixin meglumine on function of the corpus luteum after ovulation. ANIMALS 13 healthy mares. PROCEDURES A single-blinded, placebo-controlled, crossover study was conducted. Flunixin meglumine (1.1 mg/kg, IV, q 24 h) or lactated Ringer solution (placebo treatment) was administered for 2 days to mares with a dominant follicle (≥ 35 mm in diameter) and behavioral signs of estrus. Mares then were bred by artificial insemination. Number of days to ovulation from initial detection of a follicle ≥ 30 mm in diameter, uterine edema score, and pregnancy were determined by ultrasonography; the examiner was unaware of the treatment of each mare. Serum progesterone concentrations were evaluated 5 and 12 days after ovulation by use of radioimmunoassay. RESULTS Data were available for 45 estrus cycles of the 13 mares. Number of days to ovulation from initial detection of a follicle ≥ 30 mm was not significantly affected by administration of flunixin meglumine versus the placebo. Per-cycle pregnancy rate was not significantly different between flunixin meglumine (20/24 [83%] breedings) and the placebo (13/19 [68%] breedings). Flunixin meglumine did not significantly affect behavioral signs of estrus, uterine edema, or serum progesterone concentrations. CONCLUSIONS AND CLINICAL RELEVANCE Findings did not support the use of flunixin meglumine to postpone ovulation in mares.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Clonixin/analogs & derivatives , Horses , Ovulation/drug effects , Animals , Clonixin/pharmacology , Corpus Luteum/drug effects , Cross-Over Studies , Estrous Cycle/drug effects , Estrus/drug effects , Female , Insemination, Artificial/veterinary , Pregnancy , Progesterone , Single-Blind Method
20.
Physiol Genomics ; 51(3): 73-76, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30716010

ABSTRACT

Preeclampsia (PE) is a devastating adverse outcome of pregnancy. Characterized by maternal hypertension, PE, when left untreated, can result in death of both mother and baby. The cause of PE remains unknown, and there is no way to predict which women will develop PE during pregnancy. The only known treatment is delivery of both the fetus and placenta; therefore, an abnormal placenta is thought to play a causal role. Women with obesity before pregnancy have an increased chance of developing PE. Increased adiposity results in a heightened state of systemic inflammation that can influence placental development. Adipose tissue is a rich source of proinflammatory cytokines and complement proteins, which have been implicated in the pathogenesis of PE by promoting the expression of antiangiogenic factors in the mother. Because an aggravated inflammatory response, angiogenic imbalance, and abnormal placentation are observed in PE, we hypothesize that maternal obesity and complement proteins derived from adipose tissue play an important role in the development of PE.


Subject(s)
Obesity/complications , Pre-Eclampsia/etiology , Adipose Tissue/metabolism , Complement Activation/immunology , Complement C5a/metabolism , Cytokines/metabolism , Female , Humans , Neovascularization, Physiologic , Placentation/physiology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...