Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 22(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33286936

ABSTRACT

Channel flow turbulence exhibits interesting spatiotemporal complexities at transitional Reynolds numbers. In this paper, we investigated some aspects of the kinematics and dynamics of fully localized turbulent bands in large flow domains. We discussed the recent advancement in the understanding of the wave-generation at the downstream end of fully localized bands. Based on the discussion, we proposed a possible mechanism for the tilt direction selection. We measured the propagation speed of the downstream end and the advection speed of the low-speed streaks in the bulk of turbulent bands at various Reynolds numbers. Instead of measuring the tilt angle by treating an entire band as a tilted object as in prior studies, we proposed that, from the point of view of the formation and growth of turbulent bands, the tilt angle should be determined by the relative speed between the downstream end and the streaks in the bulk. We obtained a good agreement between our calculation of the tilt angle and the reported results in the literature at relatively low Reynolds numbers.

2.
Proc Natl Acad Sci U S A ; 117(21): 11233-11239, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393637

ABSTRACT

Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.

3.
Nature ; 526(7574): 550-3, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26490621

ABSTRACT

Over a century of research into the origin of turbulence in wall-bounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At moderate flow speeds, turbulence is confined to localized patches; it is only at higher speeds that the entire flow becomes turbulent. The origin of the different states encountered during this transition, the front dynamics of the turbulent regions and the transformation to full turbulence have yet to be explained. By combining experiments, theory and computer simulations, here we uncover a bifurcation scenario that explains the transformation to fully turbulent pipe flow and describe the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.

SELECTION OF CITATIONS
SEARCH DETAIL
...