Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microb Ecol ; 84(1): 44-58, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34398256

ABSTRACT

Nitrogen (N) shortage poses a great challenge to the implementation of in situ bioremediation practices in mining-contaminated sites. Diazotrophs can fix atmospheric N2 into a bioavailable form to plants and microorganisms inhabiting adverse habitats. Increasing numbers of studies mainly focused on the diazotrophic communities in the agroecosystems, while those communities in mining areas are still not well understood. This study compared the variations of diazotrophic communities in composition and interactions in the mining areas with different extents of arsenic (As) and antimony (Sb) contamination. As and Sb co-contamination increased alpha diversities and the abundance of nifH encoding the dinitrogenase reductase, while inhibited the diazotrophic interactions and substantially changed the composition of communities. Based on the multiple lines of evidence (e.g., the enrichment analysis of diazotrophs, microbe-microbe network, and random forest regression), six diazotrophs (e.g., Sinorhizobium, Dechloromonas, Trichormus, Herbaspirillum, Desmonostoc, and Klebsiella) were identified as keystone taxa. Environment-microbe network and random forest prediction demonstrated that these keystone taxa were highly correlated with the As and Sb contamination fractions. All these results imply that the above-mentioned diazotrophs may be resistant to metal(loid)s.


Subject(s)
Arsenic , Microbiota , Soil Pollutants , Antimony/analysis , Arsenic/analysis , Environmental Monitoring , Soil Pollutants/analysis
2.
Environ Pollut ; 291: 118248, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34592324

ABSTRACT

A nitrogen (N) deficiency will usually hinder bioremediation efforts in mining-derived habitats such as occurring in mining regions. Diazotrophs can provide N to support the growth of plants and microorganisms in these environments. However, diazotrophic communities in mining areas have been not studied frequently and are more poorly understood than those in other environments, such as in agricultural soils or in the presence of legumes. The current study compares the differences in depth-resolved diazotrophic community compositions and interactions in two contrasting sites (to depths of 2 m), including a highly contaminated and a moderately contaminated site. Antimony (Sb) and arsenic (As) co-contamination induced a loosely connected biotic interaction, and a selection of deep soils by diazotrophic communities. Multiple lines of evidence, including the enrichment of diazotrophic taxa in the highly contaminated sites, microbe-microbe interactions, environment-microbe interactions, and a machine learning approach (random forests regression), demonstrated that Rhizobium was the keystone taxon within the vertical profile of contaminated soil and was resistant to the Sb and As contaminant fractions. All of these observations suggest that one diazotroph, Rhizobium, may play an important role in N fixation in the examined contaminated sites.


Subject(s)
Arsenic , Soil Pollutants , Antimony/analysis , Arsenic/analysis , Environmental Monitoring , Soil , Soil Microbiology , Soil Pollutants/analysis
3.
Environ Sci Pollut Res Int ; 28(47): 67472-67486, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34254246

ABSTRACT

The use of citric acid (CA) chelator to facilitate metal bioavailability is a promising approach for the phytoextraction of heavy metal contaminants. However, the role of the CA chelator associated with arbuscular mycorrhizal fungi (AMF) inoculation on phytoextraction of vanadium (V) has not been studied. Therefore, in this study, a greenhouse pot experiment was conducted to evaluate the combined effect of CA chelator and AMF inoculation on growth performance and V phytoextraction of plants in V-contaminated soil. The experiment was performed via CA (at 0, 5, and 10 mM kg-1 soil levels) application alone or in combination with AMF inoculation by Medicago sativa Linn. (M. sativa). Plant biomass, root mycorrhizal colonization, P and V accumulation, antioxidant enzyme activity in plants, and soil chemical speciation of V were evaluated. Results depicted (1) a marked decline in plant biomass and root mycorrhizal colonization in 5- and 10-mM CA treatments which were accompanied by a significant increased V accumulation in plant tissues. The effects could be attributed to the enhanced acid-soluble V fraction transferring from the reducible fraction. (2) The presence of CA significantly enhanced P acquisition while the P/V concentration ratio in plant shoots and roots decreased, owing to the increased V translocation from soil to plant. (3) In both CA-treated soil, AMF-plant symbiosis significantly improved dry weight (31.4-73.3%) and P content (37.3-122.5%) in shoots and roots of M. sativa. The combined treatments also showed markedly contribution in reduction of malondialdehyde (MDA) content (12.8-16.2%) and higher antioxidants (SOD, POD, and CAT) activities in the leaves. This suggests their combination could promote growth performance and stimulate antioxidant response to alleviate V stress induced by CA chelator. (4) Taken together, 10 mM kg-1 CA application and AMF inoculation combination exhibited a higher amount of extracted V both in plant shoots and roots. Thus, citric acid-AMF-plant symbiosis provides a novel remediation strategy for in situ V phytoextraction by M. sativa in V-contaminated soil.


Subject(s)
Mycorrhizae , Soil Pollutants , Biodegradation, Environmental , Citric Acid , Medicago sativa , Mycorrhizae/chemistry , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Vanadium
4.
Environ Sci Pollut Res Int ; 28(41): 58523-58535, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34115291

ABSTRACT

Soil contamination due to mining activities is a great concern in China. Although the effects of mining pollution resulting in changes of soil characteristics and the microbiome have been documented, studies on the responses of plant root-associated microbial assemblages remain scarce. In this work, we collected bulk soil, rhizosphere soil, and root endosphere samples of Cyperus rotundus L (Cyp) plants from two Pb/Zn mines, of which, one was abandoned (SL) and the other was active (GD), to investigate the bacterial community responses across different site contamination levels and Cyp plant compartments. For comparison, one unpolluted site (SD) was included. Results revealed that soils from the SL and GD sites were seriously contaminated by metal(loid)s, including Pb, Zn, As, and Sb. Bacterial richness and diversity depended on the sampling site and plant compartment. All sample types from the SL site had the lowest bacterial diversities and their bacterial communities also exhibited distinct patterns compared to GD and SD samples. As for the specific sampling site, bacterial communities from the root endosphere exhibited different patterns from those in bulk and rhizosphere soil. Compared to the GD and SD sites, the root endosphere and the rhizosphere soil from the SL site shared core microbes, including Halomonas, Pelagibacterium, and Chelativorans, suggesting that they play key roles in Cyp plant survival in such harsh environments.


Subject(s)
Cyperus , Soil Pollutants , Lead , Plant Roots/chemistry , Rhizosphere , Soil , Soil Microbiology , Soil Pollutants/analysis , Zinc
5.
J Environ Sci (China) ; 104: 387-398, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33985741

ABSTRACT

The plant root-associated microbiomes, including both the rhizosphere and the root endosphere microbial community, are considered as a critical extension of the plant genome. Comparing to the well-studied rhizosphere microbiome, the understanding of the root endophytic microbiome is still in its infancy. Miscanthus sinensis is a pioneering plant that could thrive on metal contaminated lands and holds the potential for phytoremediation applications. Characterizing its root-associated microbiome, especially the root endophytic microbiome, could provide pivotal knowledge for phytoremediation of mine tailings. In the current study, M. sinensis residing in two Pb/Zn tailings and one uncontaminated site were collected. The results demonstrated that the metal contaminant fractions exposed strong impacts on the microbial community structures. Their influences on the microbial community, however, gradually decreases from the bulk soil through the rhizosphere soil and finally to the endosphere, which resulting in distinct root endophytic microbial community structures compared to both the bulk and rhizosphere soil. Diverse members affiliated with the order Rhizobiales was identified as the core microbiome residing in the root of M. sinensis. In addition, enrichment of plant-growth promoting functions within the root endosphere were predicted, suggesting the root endophytes may provide critical services to the host plant. The current study provides new insights into taxonomy and potential functions of the root-associated microbiomes of the pioneer plant, M. sinensis, which may facilitate future phytoremediation practices.


Subject(s)
Metals, Heavy , Microbiota , Bacteria , Plant Roots , Rhizosphere , Soil Microbiology
6.
Sci Total Environ ; 771: 144807, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33548700

ABSTRACT

The biodegradation of aniline is an important process related to the attenuation of aniline pollution at contaminated sites. Aniline contamination could occur in various pH (i.e., acidic, neutral, and alkaline) environments. However, little is known about preferred pH conditions of diverse aniline degraders at different sites. This study investigated the active aniline degraders present under contrasting pH environments using three aniline-contaminated cultures, namely, acidic sludge (ACID-S, pH 3.1), neutral river sediment (NEUS, pH 6.6), and alkaline paddy soil (ALKP, pH 8.7). Here, DNA-based stable isotope probing coupled with high-throughput sequencing revealed that aniline degradation was associated with Armatimonadetes sp., Tepidisphaerales sp., and Rhizobiaceae sp. in ACID-S; Thauera sp., Zoogloea sp., and Acidovorax sp. in NEUS; Delftia sp., Thauera sp., and Nocardioides sp. in ALKP. All the putative aniline-degrading bacteria identified were present in the "core" microbiome of these three cultures; however, only an appropriate pH may facilitate their ability to metabolize aniline. In addition, the biotic interactions between putative aniline-degrading bacteria and non-direct degraders showed different characteristics in three cultures, suggesting aniline-degrading bacteria employ diverse survival strategies in different pH environments. These findings expand our current knowledge regarding the diversity of aniline degraders and the environments they inhabit, and provide guidance related to the bioremediation of aniline contaminated sites with complex pH environments.


Subject(s)
Bacteria , Soil Microbiology , Aniline Compounds , Bacteria/genetics , Biodegradation, Environmental , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Isotopes
7.
FEMS Microbiol Ecol ; 96(11)2020 10 29.
Article in English | MEDLINE | ID: mdl-32966565

ABSTRACT

Antimony mining has resulted in considerable pollution to the soil environment. Although studies on antinomy contamination have been conducted, its effects on vertical soil profiles and depth-resolved microbial communities remain unknown. The current study selected three vertical soil profiles (0-2 m) from the world's largest antimony mining area to characterize the depth-resolved soil microbiota and investigate the effects of mining contamination on microbial adaptation. Results demonstrated that contaminated soil profiles showed distinct depth-resolved effects when compared to uncontaminated soil profiles. As soil depth increased, the concentrations of antimony and arsenic gradually declined in the contaminated soil profiles. Acidobacteria, Chloroflexi, Proteobacteria and Thaumarchaeota were the most variable phyla from surface to deep soil. The co-occurrence networks were loosely connected in surface soil, but obviously recovered and were well-connected in deep soil. The metagenomic results indicated that microbial metabolic potential also changed with soil depth. Genes encoding C metabolism pathways were negatively correlated with antimony and arsenic concentrations. Abundances of arsenic-related genes were enriched by severe contamination, but reduced with soil depth. Overall, soil depth-resolved characteristics are often many meters deep and such effects affected the indigenous microbial communities, as well as their metabolic potential due to different contaminants along vertical depths.


Subject(s)
Arsenic , Soil Pollutants , Antimony/analysis , Environmental Monitoring , Soil , Soil Microbiology , Soil Pollutants/analysis
8.
J Environ Sci (China) ; 85: 107-118, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31471017

ABSTRACT

Biochar (BC) and rhamnolipid (RL) is used in bioremediation of petroleum hydrocarbons, however, the combined effect of BC and RL in phytoremediation has not been studied until now. In this paper, the phytoremediation of petroleum hydrocarbon-contaminated soil using novel plant Spartina anglica was enhanced by the combination of biochar (BC) and rhamnolipid (RL). Samples of petroleum-contaminated soil (10, 30 and 50 g/kg) were amended by BC, BC+ RL and rhamnolipid modified biochar (RMB), respectively. After 60 day's cultivation, the removal rate of total petroleum hydrocarbons (TPHs) for unplanted soil (UP), planted soil (P), planted soil with BC addition (P-BC), planted soil with BC and RL addition (P-BC + RL) and planted soil with addition of RMB (P-RMB) were 8.6%, 19.1%, 27.7%, 32.4% and 35.1% in soil with TPHs concentration of 30 g/kg, respectively. Compared with UP, the plantation of Spartina anglica significantly decreased the concentration of C8-14 and tricyclic PAHs. Furthermore, the application of BC and RMB alleviated the toxicity of petroleum hydrocarbons to Spartina anglica via improving plant growth with increasing plant height, root vitality and total chlorophyll content. High-throughput sequencing result indicated that rhizosphere microbial community of Spartina anglica was regulated by the application of BC and RMB, with increase of bacteria and plant mycorrhizal symbiotic fungus in biochar and RMB amended soil.


Subject(s)
Biodegradation, Environmental , Petroleum/analysis , Poaceae/physiology , Soil Pollutants/analysis , Charcoal/chemistry , Glycolipids/chemistry , Petroleum/metabolism , Polycyclic Aromatic Hydrocarbons , Rhizosphere , Soil Microbiology , Soil Pollutants/metabolism
9.
Nanotoxicology ; 13(10): 1422-1436, 2019 12.
Article in English | MEDLINE | ID: mdl-31561730

ABSTRACT

The spread of antibiotic resistance genes (ARGs) has become a global environmental issue; it has been found that nanoparticles (NPs) can promote the transfer of ARGs between bacteria. However, it remains unclear whether NPs can affect this kind of conjugation in Streptomyces, which mainly conjugate with other bacteria via spores. In the present study, we demonstrated that Al2O3 NPs significantly promote the conjugative transfer of ARGs from Escherichia coli (E. coli) ET12567 to Streptomyces coelicolor (S. coelicolor) M145 without the use of heat shock method. The number of transconjugants induced by Al2O3 particles was associated with the size and concentration of Al2O3 particles, exposure time, and the ratio of E. coli and spores. When nanoparticle size was 30 nm at a concentration of 10 mg/L, the conjugation efficiency reached a peak value of 182 cfu/108 spores, which was more than 60-fold higher than that of the control. Compared with nanomaterials, bulk particles exhibited no significant effect on conjugation efficiency. We also explored the mechanisms by which NPs promote conjugative transfer. After the addition of NPs, the intracellular ROS content increased and the expression of the classical porin gene ompC was stimulated. In addition, ROS enhanced the mRNA expression levels of conjugative genes by inhibiting global regulation genes. Meanwhile, expression of the conjugation-related gene intA was also stimulated, ultimately increasing the number of transconjugants. Our results indicated that Al2O3 NPs significantly promoted the conjugative transfer of ARGs from bacteria to spores and aggravated the diffusion of resistance genes in the environment.


Subject(s)
Aluminum Oxide/toxicity , Conjugation, Genetic/drug effects , Drug Resistance, Microbial/drug effects , Escherichia coli/drug effects , Nanoparticles/toxicity , Streptomyces/drug effects , Escherichia coli/genetics , Genes, Bacterial , Plasmids/drug effects , Streptomyces/genetics
10.
Sci Total Environ ; 678: 438-447, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31077922

ABSTRACT

Anaerobic degradation of petroleum hydrocarbons (PH) is an important process in contaminated environment. The application of rhamnolipids in anaerobic degradation of PH was not extensively studied and inconclusive. This study explored the combined effect of rhamnolipids and electron acceptors on the anaerobic degradation process of total petroleum hydrocarbons (TPH) in sediment from an oil field. The results indicated that rhamnolipids decreased the surface tension of the medium and increased the desorption of TPH from the sediment. After 10-wk culture, the maximum degradation rate of TPH in nitrate and sulfate condition was found to be 32.2% and 24.0%, respectively, with rhamnolipids concentration of 150 mg/L. The addition of 45 and 150 mg/L rhamnolipids increased the degradation rate of TPH but the promotion effect was weakened in the treatment with 450 mg/L rhamnolipids. The copy number of two degradation genes (1-methylalkyl) succinate synthase gene (masD) and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase gene (bamA) increased with incubation time and showed higher copy numbers in treatments with 45 and 150 mg/L rhamnolipids. In the first week, with the increase of rhamnolipids concentration, the copy number of 16S rDNA increased rapidly and the concentration of electron receptors decreased correspondingly. Moreover, no nitrate was detected in treatments of nitrate with 450 mg/L rhamnolipids after the first week. Microbial community structure analysis result showed that Thiobacillus was the dominant bacteria in all treatments with nitrate as electron acceptor and its proportion gradually decreased with the increase of rhamnolipids concentration. The addition of rhamnolipids changed the subdominant bacteria in the treatments with nitrate as electron acceptor. Methanothrix was the dominant archaea in all treatments with rhamnolipids content of lower than 45 mg/L. When the rhamnolipids concentration increased, the dominant archaea changed to Methanogenium or Methanobacterium. In conclusion, suitable concentrations of rhamnolipids could promote the anaerobic degradation of PH in the sediment.


Subject(s)
Environmental Restoration and Remediation , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Anaerobiosis , Biodegradation, Environmental , China , Glycolipids , Nitrates/chemistry , Oxidation-Reduction , Petroleum , Rivers , Sulfates/chemistry
11.
J Environ Sci (China) ; 81: 80-92, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30975332

ABSTRACT

A column microcosm was conducted by amending crude oil into Dagang Oilfield soil to simulate the bioremediation process. The dynamic change of microbial communities and metabolic genes in vertical depth soil from 0 to 80 cm were characterized to evaluate the petroleum degradation potential of indigenous microorganism. The influence of environmental variables on the microbial responds to petroleum contamination were analyzed. Degradation extent of 42.45% of n-alkanes (C8-C40) and 34.61% of 16ΣPAH were reached after 22 weeks. Relative abundance of alkB, nah, and phe gene showed about 10-fold increment in different depth of soil layers. Result of HTS profiles demonstrated that Pseudomonas, Marinobacter and Lactococcus were the major petroleum-degrading bacteria in 0-30 and 30-60 cm depth of soils. Fusarium and Aspergillus were the dominant oil-degrading fungi in the 0-60 cm depth of soils. In 60-80 cm deep soil, anaerobic bacteria such as Bacteroidetes, Lactococcus, and Alcanivorax played important roles in petroleum degradation. Redundancy analysis (RDA) and correlation analysis demonstrated that petroleum hydrocarbons (PHs) as well as soil salinity, clay content, and anaerobic conditions were the dominant effect factors on microbial community compositions in 0-30, 30-60, and 60-80 cm depth of soils, respectively.


Subject(s)
Biodegradation, Environmental , Petroleum/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Genes, Microbial , Hydrocarbons , Microbiota , Oil and Gas Fields , Petroleum/analysis , Petroleum Pollution , Salinity , Soil Pollutants/analysis
12.
J Biosci Bioeng ; 128(1): 72-79, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30765135

ABSTRACT

The anaerobic degradation of petroleum is an important process in natural environments. So far, few studies have considered the response of the microbial community to nanomaterials during this process. This study explored the potential effects of graphene oxide and biochar on the anaerobic degradation of petroleum hydrocarbons in long-term experiments. Cyclic voltammetry and electrochemical impedance spectroscopy indicated that the addition of carbon-based materials promoted the electrochemical activity of anaerobic cultures that degrade petroleum hydrocarbons. The maximum degradation rates for benzene, toluene, ethylbenzene, and xylene (BTEXs) in the cultures incubated for 10 weeks with graphene oxide (0.02 mg/L) and biochar (20 mg/L) were 76.5% and 77.6%, respectively. The maximum degradation rates of n-alkanes in the cultures incubated for 10 weeks with graphene oxide (2 mg/L) and biochar (100 mg/L) were 70.0% and 77.8%, respectively. The 16S rDNA copy numbers in the treatments with 0.02 mg/L graphene oxide and 20 mg/L biochar were significantly higher than others during the process (P < 0.05). In the 2nd week, the maximum copy numbers of the masD and bamA genes in the treatments with biochar were 349 copies/mL (20 mg/L) and 422 copies/mL (20 mg/L), respectively, and in the treatments with graphene oxide were 289 copies/mL (0 mg/L) and 366 copies/mL (0.02 mg/L). The contents of carbon-based materials had slight effects on the microbial community structure, whereas the culture time had obvious effects. Paracoccus denitrificans, Pseudomonas aeruginosa, and Hydrogenophaga caeni were the dominant microorganisms in the culture systems under all treatments.


Subject(s)
Charcoal/pharmacology , Environmental Restoration and Remediation/methods , Graphite/pharmacology , Hydrocarbons/metabolism , Petroleum/metabolism , Anaerobiosis/drug effects , Biodegradation, Environmental/drug effects , Charcoal/chemistry , Graphite/chemistry , Humans , Microbiota , Oil and Gas Industry/methods , Petroleum/microbiology , Petroleum Pollution , Sewage/chemistry , Sewage/microbiology
13.
Chemosphere ; 217: 686-694, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448748

ABSTRACT

In this study, novel biochar supported nano-scale zero-valent iron (biochar-CMC-nZVI) stabilized by carboxymethyl cellulose (CMC) was developed and used for the removal of hexavalent chromium (Cr(VI) from aqueous solution. With the stabilization of CMC, nZVI particles (about 80 nm) were effectively dispersed onto the surface of biochar, which inhibited the aggregation of nZVI and resulted in the smaller particle size of nZVI on the surface of biochar. The results showed that the specific surface area of the composite was 11.1 m2/g, lower than that of pristine biochar. The basic element composition was C, O, and Fe with a large number of oxygen-containing functional groups (-COOH, OH, and OCO) observed on the surface. Cr(VI) was reduced to Cr(III) by the composite material, mainly due to the reduction of nZVI on the biochar surface. Upon reaction with Cr(VI), CrxFe1-x(OH)3 and FexCryO4 were deposited on the surface of biochar-CMC-nZVI composite. Electrostatic attraction, reduction, and surface complexation were the dominant removal mechanisms. The results showed that the 100 mg/L Cr(VI) could be removed completely by biochar-CMC-nZVI within 18 h, at a dosage of 1.25 g/L and an initial pH of 5.6. Cr(VI) removal by biochar-CMC-nZVI was favored by lower pH. The pseudo-second-order kinetic model and the Langmuir isothermal adsorption model fitted well with the sorption kinetic and isotherm data, indicated Cr(VI) adsorption mechanism was a chemisorption based multi-layer adsorption. The present study demonstrated the promise of biochar-CMC-nZVI composite as a low-cost, "green", and effective sorbent for removal of Cr(VI) in the environment.


Subject(s)
Carboxymethylcellulose Sodium , Charcoal/chemistry , Chromium/isolation & purification , Iron/chemistry , Adsorption , Nanocomposites , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...