Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.463
Filter
2.
Mol Phylogenet Evol ; 200: 108182, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222738

ABSTRACT

The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.


Subject(s)
Liliaceae , Phylogeny , Liliaceae/genetics , Liliaceae/classification , Transcriptome , Evolution, Molecular , Plastids/genetics , DNA, Mitochondrial/genetics
3.
Nature ; 633(8029): 338-343, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39261617

ABSTRACT

The presence of disorder substantially influences the behaviour of physical systems. It can give rise to slow or glassy dynamics, or to a complete suppression of transport as in Anderson insulators1, where normally extended wavefunctions such as light fields or electronic Bloch waves become exponentially localized. The combined effect of disorder and interactions is central to the richness of condensed-matter physics2. In bosonic systems, it can also lead to additional quantum states such as the Bose glass3,4-an insulating but compressible state without long-range phase coherence that emerges in disordered bosonic systems and is distinct from the well-known superfluid and Mott insulating ground states of interacting bosons. Here we report the experimental realization of the two-dimensional Bose glass using ultracold atoms in an eight-fold symmetric quasicrystalline optical lattice5. By probing the coherence properties of the system, we observe a Bose-glass-to-superfluid transition and map out the phase diagram in the weakly interacting regime. We furthermore demonstrate that it is not possible to adiabatically traverse the Bose glass on typical experimental timescales by examining the capability to restore coherence and discuss the connection to the expected non-ergodicity of the Bose glass. Our observations are in good agreement with recent quantum Monte Carlo predictions6 and pave the way for experimentally testing the connection between the Bose glass, many-body localization and glassy dynamics more generally7,8.

4.
Front Plant Sci ; 15: 1425158, 2024.
Article in English | MEDLINE | ID: mdl-39220016

ABSTRACT

Introduction: The genus Acronema, belonging to Apiaceae, includes approximately 25 species distributed in the high-altitude Sino-Himalayan region from E Nepal to SW China. This genus is a taxonomically complex genus with often indistinct species boundaries and problematic generic delimitation with Sinocarum and other close genera, largely due to the varied morphological characteristics. Methods: To explore the phylogenetic relationships and clarify the limits of the genus Acronema and its related genera, we reconstructed a reliable phylogenetic framework with high support and resolution based on two molecular datasets (plastome data and ITS sequences) and performed morphological analyses. Results: Both phylogenetic analyses robustly supported that Acronema was a non-monophyletic group that fell into two clades: Acronema Clade and East-Asia Clade. We also newly sequenced and assembled sixteen Acronema complete plastomes and performed comprehensively comparative analyses for this genus. The comparative results showed that the plastome structure, gene number, GC content, codon bias patterns were high similarity, but varied in borders of SC/IR and we identified six different types of SC/IR border. The SC/IR boundaries of Acronema chienii were significantly different from the other Acronema members which was consistent with the type VI pattern in the genus Tongoloa. We also identified twelve potential DNA barcode regions (ccsA, matK, ndhF, ndhG, psaI, psbI, rpl32, rps15, ycf1, ycf3, psaI-ycf4 and psbM-trnD) for species identification in Acronema. The molecular evolution of Acronema was relatively conservative that only one gene (petG) was found to be under positive selection (ω = 1.02489). Discussion: The gene petG is one of the genes involved in the transmission of photosynthetic electron chains during photosynthesis, which plays a crucial role in the process of photosynthesis in plants. This is also a manifestation of the adaptive evolution of plants in high-altitude areas to the environment. In conclusion, our study provides novel insights into the plastome adaptive evolution, phylogeny, and taxonomy of genus Acronema.

5.
Oncol Lett ; 28(5): 532, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39290960

ABSTRACT

Malignant melanoma meningeal metastasis (MMMM) is a rare clinical condition with a poor prognosis. The observation of hemorrhagic cerebrospinal fluid (CSF) in this type of disease is relatively uncommon and may indicate disease progression. The present study reports the case of a 51-year-old male with malignant melanoma who presented with a headache. Imaging studies did not identify abnormalities; however, an analysis of the CSF revealed hemorrhagic changes. The results of cytological examination of the CSF showed melanoma cells, leading to the final diagnosis of MMMM. This case emphasizes the importance of monitoring neurological symptoms and conducting comprehensive CSF cytological examination in patients with melanoma, creating disease awareness in clinicians.

6.
Plant Physiol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39268876

ABSTRACT

Soybean [Glycine max (L.) Merr.] is a major oil-producing crop worldwide. Although several related proteins regulating soybean oil accumulation have been reported, little is known about the regulatory mechanisms. In this study, we characterized vascular plant one-zinc-finger 1A (GmVOZ1A) that interacts with WRINKLED 1a (GmWRI1a) using yeast two-hybrid library screening. The GmVOZ1A-GmWRI1a interaction was further verified by protein-protein interaction assays in vivo and in vitro. GmVOZ1A enhanced the seed fatty acid and oil contents by regulating genes involved in lipid biosynthesis. Conversely, a loss-of-function mutation in GmVOZ1A resulted in a reduction in triacylglycerol (TAG) content in soybean. Protein-DNA interaction assays revealed that GmVOZ1A and GmWRI1a cooperate to up-regulate the expression level of acyl-coenzymeA-binding protein 6a (GmACBP6a) and promote the accumulation of TAG. In addition, GmACBP6a overexpression promoted seed fatty acid and oil contents, as well as increased seed size and 100-seed weight. Taken together, these findings indicate that the transcription factor GmVOZ1A regulates soybean oil synthesis and cooperates with GmWRI1a to up-regulate GmACBP6a expression and oil biosynthesis in soybean. The results lay a foundation for a comprehensive understanding of the regulatory mechanisms underlying soybean oil biosynthesis and will contribute to improving soybean oil production through molecular breeding approaches.

7.
Phys Rev Lett ; 133(9): 096803, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39270175

ABSTRACT

The efficient detection of the Néel vector in antiferromagnets is one of the prerequisites toward antiferromagnetic spintronic devices and remains a challenging problem. Here, we propose that the layer Hall effect can be used to efficiently detect the Néel vector in centrosymmetric magnetoelectric antiferromagnets. Thanks to the robust surface magnetization of magnetoelectric antiferromagnets, the combination of sizable exchange field and an applied electric field results in the layer-locked spin-polarized band edges. Moreover, the Berry curvature can be engineered efficiently by an electric field, which consequently gives rise to the layer-locked Berry curvature responsible for the layer Hall effect. Importantly, it is demonstrated that the layer Hall conductivity strongly depends on the Néel vector orientation and exhibits rich electromagnetic responses, which can be used to detect the Néel vector reversal. Based on density functional theory calculations, we exemplify those phenomena in the prototypical Cr_{2}O_{3} compound. A complete list of the magnetic point groups sustaining the layer Hall effect is presented, aiding the search for realistic materials. Our work proposes a novel approach to detect the Néel vector and holds great promise for antiferromagnetic spintronic applications.

8.
J Mol Model ; 30(10): 322, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225909

ABSTRACT

CONTEXT: The adsorptions of gas (CO, CO2, NH3) by metal (Au, Ag, Cu)-doped single layer WS2 are studied by density functional theory. The doping of metal atoms makes WS2 behave as n-type semiconductors. The final adsorption sites for CO, CO2, and NH3 are close to the atomic sites of the doped metal. The adsorptions of CO and NH3 gases on Cu/WS2, Ag/WS2, and Au/WS2 are dominated by chemisorption. The doped metal atoms enhance the hybridization of the substrate with the gas molecular orbitals, which contributes to the charge transfer and enhances the adsorption of the gas with the material surface. The adsorptions of CO and NH3 on Cu/WS2 and Ag/WS2 allow favorable desorption in a short time after heating. The single-layer Cu/WS2 is proved to have the potential to be used as a reliable recyclable sensor for CO. This work provides a theoretical basis for developing high-performance WS2-based gas sensors. METHODS: In this paper, the adsorption energy, electronic structure, charge transfer, and recovery time of CO, CO2, and NH3 in the doped system have been investigated based on the CASTEP code of density functional theory. The exchange correlation function used is the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The TS (Tkatchenko-Scheffler) dispersion correction method was used to involve the effects of van der Waals interaction on the adsorption energies for all adsorption system. The ultrasoft pseudopotentials are chosen and the plane-wave cut-off energies are set to 500 eV. The k-point mesh generated by the Monkhorst package scheme is used to perform the numerical integration of the Brillouin zone and 5 × 5 × 1 k-point grid is used. The tolerances of total energy convergence, maximum ionic force, ionic displacement, and stress component are 1.0 × 10-5 eV/atom, 0.03 eV/Å, 0.001 Å, and 0.05 GPa, respectively.

9.
Angew Chem Int Ed Engl ; : e202414089, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221861

ABSTRACT

The exploration of novel functionalized supramolecular coordination complexes (SCCs) can enable new applications in domains that include purification and sensing. In this study, employing a coordination-driven self-assembly strategy, we designed and prepared a series of benzochalcogenodiazole-based metallohelicates as high-efficiency charge transfer surface-enhanced Raman scattering (SERS) substrates, expanding the range of applications for these metallohelicates. Through structural modifications, including the substitution of single heteroatoms on ligands, replacement of coordinating metals, and alteration of ligand framework linkages, the Raman performance of these metallohelicates as substrates were systematically optimized. Notably, the SERS enhancement factors (EFs) of the metallohelicate-based SERS substrates were significantly enhanced to levels as high as 1.03 × 107, which rivals the EFs of noble metals devoid of "hot spots". Additionally, the underlying Raman enhancement mechanisms of these metallohelicates have been investigated through a combination of control experiments and theoretical calculations. This study not only demonstrates the utility of metallohelicates as SERS substrates but also offers insights and materials for the development of high-efficiency new charge transfer SERS substrates.

10.
Int J Biol Macromol ; 279(Pt 1): 135157, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39214224

ABSTRACT

Both exogenous and endogenous reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) play pivotal roles in promoting the hyphal formation of Candida albicans (CA), which suggests that clearing ROS could inhibit CA hyphae formation. A ROS-sensitive hydrogel (CAS@4Arm-PB/CS) was formulated by using a novel four-arm polyethylene glycol (4Arm-PEG) derivative (4Arm-PB) as a crosslinking agent, chitosan (CS) as the hydrogel matrix, and caspofungin (CAS) as the antifungal drug against CA. The ROS-sensitivity, disintegration mechanism, crosslinking action, swelling degree, microstructure, modulus, and rheological properties of 4Arm-PB were characterized. According to the results, 5.0 % 4Arm-PB could quickly and efficiently cross-link 0.5 mg/mL of CS. The ROS-sensitivity of 4Arm-PB was 10-50 µM, indicating a strong ROS sensitivity. The in vitro and in vivo anti-CA results indicated that CAS@4Arm-PB/CS not only cleared endogenous and exogenous ROS and inhibited the formation of CA hyphae and biofilm but also contributed beneficially to the treatment of VVC mice caused by CA infection, implying a certain safety aspect and an in vivo applicability. This research introduces a novel functional crosslinking agent for CS hydrogel formulation, presenting a new avenue for hydrogel-based drug delivery systems and therapeutic strategies for VVC treatment.

11.
ACS Appl Mater Interfaces ; 16(35): 45799-45808, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39163115

ABSTRACT

Preparing high-quality perovskite films is a decisive step toward realizing highly efficient and stable perovskite solar cells (Pero-SCs). Water is a key factor affecting the stability of the Pero-SCs. Here, the widely used water adsorbents chitosan, sorbitol, and sodium hyaluronate (NaHA) were used as hydrophilic layers on the upper interface of the perovskite to form a barrier against water. The water adsorbents also passivated defects on the surface of the perovskite active layer due to their -OH and -COOH functional groups. The NaHA-modified devices showed the best power conversion efficiency (PCE) (PCE = 21.74%). Although the NaHA-modified Pero-SCs showed optimal photovoltaic performance, the stability of the modified devices decreased due to the strong water adsorption ability of NaHA, while with moderate water adsorption ability sorbitol-modified devices exhibited good stability and PCE. The devices were tested in the dark and room temperature at different humidity levels for 800 h. At low humidity (25% ± 5% RH), the PCEs of the sorbitol- and NaHA-modified devices were maintained at 80% and 71% of the initial values, respectively. At high humidity (75% ± 5% RH), the PCE was maintained at 64% and 23% of the initial values, respectively. This work provides an avenue to select adsorbents with suitable water absorption ability as the interface modification layer, thus reducing the water erosion of perovskite films and obtaining highly stable inverted Pero-SCs.

12.
Colloids Surf B Biointerfaces ; 243: 114140, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39111157

ABSTRACT

Excessive local accumulation of reactive oxygen species (ROS) in vulvovaginal candidiasis (VVC) leads to oxidative stress and aggravates inflammation. This study aimed to optimize and synthesize four ROS-sensitive polyethylene glycol (PEG)-boride polymers (PB, PCB, BPB, and BCPCB). A nanomicelle (BCPCB-K) was constructed using BCPCB-encapsulated ketoconazole (KTZ). Finally, the depolymerization principle and ROS-sensitive drug release of BCPCB-K as well as its anti-Candida albicans (CA) and therapeutic effects on mice with VVC were explored through in vitro and in vivo experiments. BCPCB-K exhibited low toxicity to mammalian cells in vitro and good biocompatibility in vivo. It also improved the dispersion and solubility of the hydrophobic drug KTZ. Furthermore, BCPCB-K simultaneously scavenged ROS and released the drug, thus facilitating the antifungal and VVC-treating effects of KTZ. Overall, the findings of this study broadened the application of ROS-sensitive materials in the drug-loading and antifungal fields and provided a strategy for VVC treatment.


Subject(s)
Antifungal Agents , Candida albicans , Candidiasis, Vulvovaginal , Ketoconazole , Microbial Sensitivity Tests , Reactive Oxygen Species , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Reactive Oxygen Species/metabolism , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Ketoconazole/pharmacology , Ketoconazole/administration & dosage , Female , Animals , Mice , Micelles , Nanoparticles/chemistry , Humans , Drug Liberation , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Particle Size
13.
Nat Commun ; 15(1): 7189, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168976

ABSTRACT

Biological ion channels usually conduct the high-flux transport of 107 ~ 108 ions·s-1; however, the underlying mechanism is still lacking. Here, by applying the KcsA potassium channel as a typical example, and performing multitimescale molecular dynamics simulations, we demonstrate that there is coherence of the K+ ions confined in biological channels, which determines transport. The coherent oscillation state of confined K+ ions with a nanosecond-level lifetime in the channel dominates each transport event, serving as the physical basis for the high flux of ~108 ions∙s-1. The coherent transfer of confined K+ ions only takes several picoseconds and has no perturbation effect on the ion coherence, acting as the directional key of transport. Such ion coherence is allowed by quantum mechanics. An increase in the coherence can significantly enhance the ion conductance. These findings provide a potential explanation from the perspective of coherence for the high-flux ion transport with ultralow energy consumption of biological channels.


Subject(s)
Ion Transport , Molecular Dynamics Simulation , Potassium Channels , Potassium , Quantum Theory , Potassium Channels/metabolism , Potassium Channels/chemistry , Potassium/metabolism , Potassium/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Ions/metabolism
14.
ACS Appl Mater Interfaces ; 16(34): 45704-45712, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39199021

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising hole-transporting material for perovskite light-emitting diodes (PeLEDs). However, intrinsic luminance quenching at the PEDOT:PSS/perovskite interface causes deterioration of performance. Here, we develop a facile and effective strategy to passivate the interface defects via the modification of PEDOT:PSS by l-norvaline. As a pre-buried additive, l-norvaline not only reacts with PEDOT:PSS, but also forms the coordination and hydrogen bond with perovskite. We demonstrated that the generation of buried defects at the PEDOT:PSS/perovskite interface originates from the crystallization process of the perovskite film during annealing by in-situ photoluminescence measurements. The surface of l-norvaline-modified PEDOT:PSS can passivate the interfacial defects and inhibit exciton quenching. As a result, the PeLED shows a good device performance with a luminance of 80089 cd m-2 at 509 nm and an external quantum efficiency of 13.04%.

15.
Ann Med ; 56(1): 2396072, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39194283

ABSTRACT

BACKGROUND: Serum fibrinogen/albumin ratio (FAR) is a new inflammatory marker related to a variety of diseases, and it has been shown to be associated with stroke. This study is to investigate the relationship between serum FAR and early neurological deterioration (END) in patients with recent small subcortical infarction (RSSI). PATIENTS AND METHODS: Consecutive RSSI patients admitted to the First Affiliated Hospital of Zhengzhou University from June 2015 to June 2022 were enrolled. The National Institute of Health Stroke Scale (NIHSS) was utilized to evaluate the severity of the patients at admission and within seven days post-admission. END was defined as an increase of ≥2 points in NIHSS score from admission or ≥1 point in the motor item of the score within seven days post-admission. Multivariate logistic regression analysis was employed to identify risk factors for END. The correlation between FAR and END was investigated using restricted cubic spline (RCS) analysis. Subgroup analysis was used to assess stability across different populations. RESULTS: A total of 766 RSSI patients were included in the analysis, with 538 males (70.24%). END occurred in 115 (15.01%) patients. Multivariate logistic regression analysis revealed that FAR (OR = 1.016, 95%CI: 1.005-1.028), PAD (OR = 1.805, 95%CI: 1.161-2.807) and age (OR = 1.028, 95%CI: 1.009-1.048) were associated with END in RSSI patients. RCS analysis indicated a linear correlation between FAR and END (p for nonlinear = .128). Subgroup analysis indicated association between FAR and END in male (OR = 1.02, 95%CI: 1.00-1.03), patients aged ≤65 years (OR = 1.02, 95%CI: 1.00-1.03) and patients without smoking history (OR = 1.02, 95%CI: 1.00-1.03). CONCLUSIONS: Elevated FAR levels were associated with the occurrence of END within seven days after admission in RSSI patients, especially in men, age ≤65 years, or patients without smoking history.


Subject(s)
Biomarkers , Fibrinogen , Humans , Male , Female , Fibrinogen/analysis , Fibrinogen/metabolism , Middle Aged , Aged , Biomarkers/blood , Risk Factors , Serum Albumin/analysis , Serum Albumin/metabolism , Cerebral Infarction/blood , Severity of Illness Index , Logistic Models
16.
Acta Pharmacol Sin ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103530

ABSTRACT

Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.

17.
Angew Chem Int Ed Engl ; : e202412821, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105426

ABSTRACT

The rational manipulation of the surface reconstruction of catalysts is a key factor in achieving highly efficient water oxidation, but it is a challenge due to the complex reaction conditions. Herein, we introduce a novel in situ reconstruction strategy under a gradient magnetic field to form highly catalytically active species on the surface of ferromagnetic/non-magnetic CoFe2O4@CoBDC core-shell structure for electrochemical oxygen evolution reaction (OER). We demonstrate that the Kelvin force from the cores' local gradient magnetic field modulates the shells' surface reconstruction, leading to a higher proportion of Co2+ as active sites. These Co sites with optimized electronic configuration exhibit more favorable adsorption energy for oxygen-containing intermediates and lower the activation energy of the overall catalytic reaction. As a result, a significant enhancement in OER performance is achieved with a large current density increment about 128% at 1.63 V and an overpotential reduction by 28 mV at 10 mA cm-2 after reconstruction. Interestingly, after removing the external magnetic field, the activity could persist for over 100 h. This work showcases the directional surface reconstruction of catalysts under a gradient magnetic field for enhanced water oxidation.

18.
Small ; : e2402083, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140166

ABSTRACT

Graphyne nanoscrolls (GNSs) have attracted significant research interest because of their wide-ranging applications. However, the production of GNSs via a self-scrolling approach is environment dependent. Here, molecular dynamics simulations are conducted to evaluate the self-scrolling behavior of an α-graphyne (α-GY) ribbon on a carbon nanotube (CNT) within various multiphysical environments, accounting for the interactions among temperature, electric field, and argon gas. The results demonstrate that the fabrication of an α-GNS lies in the interplay of van der Waals (vdW) forces among the components in a vacuum. Notably, the α-GY ribbon is easier to scroll onto a thicker CNT. The electric field attenuates the vdW interaction, necessitating thicker CNTs for successful self-scrolling under a stronger electric field. In argon, both the vdW interaction and nanoscale pore contribute to the overlap formation. At 300 K, increasing argon density prolongs the time required for α-GNS formation, with self-scrolling failing beyond a critical gas density threshold. Moreover, the self-scrolling becomes easier at higher temperatures. In multiphysical environments, the interplay between the electric field and the gas density dictates the self-scrolling at low temperatures. Finally, reasonable suggestions are given for successful self-scrolling. The conclusions offer valuable insights for the practical fabrication of α-GNS.

19.
Ann Vasc Surg ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39096950

ABSTRACT

BACKGROUND: Peripheral artery disease (PAD) is a significant vascular condition that can lead to severe complications, including limb ischemia and cardiovascular events. This meta-analysis aims to evaluate the association between prediabetes, an intermediate state between normoglycemia and diabetes, and the risk of developing PAD. METHODS: A comprehensive search of PubMed, EMBASE, and Web of Science databases was conducted to identify relevant cohort studies up to April 12, 2024. Data extraction was performed independently by two reviewers, and any discrepancies were resolved by consensus. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated using a random-effects model to account for heterogeneity among studies. RESULTS: A total of eight cohort studies comprising 90133 participants were included in the meta-analysis. The pooled analysis revealed that individuals with prediabetes had a significantly higher risk of PAD compared to those with normoglycemia (RR = 1.27, 95% CI: 1.13-1.42, p < 0.001; I2 = 55%). Subgroup analyses indicated that the association was stronger in prediabetes defined by mildly elevated hemoglobin A1c (RR: 1.47) compared to those defined by impaired fasting glucose (RR: 1.21) or impaired glucose tolerance (RR: 1.17, p for subgroup difference < 0.001). In addition, a stronger association was observed for studies reporting clinically diagnosed PAD compared to studies that included asymptomatic PAD (RR: 1.32 versus 0.92, p for subgroup difference = 0.02). CONCLUSIONS: This meta-analysis demonstrates a significant association between prediabetes and an increased risk of PAD in generally community-derived population.

SELECTION OF CITATIONS
SEARCH DETAIL