Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(35): 35330-35341, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30341762

ABSTRACT

In anaerobic ammonium oxidation (anammox) systems, temperature may regulate the activity of functional bacteria (e.g., anammox bacteria) and the composition of the microbial population, ultimately determining the performance of the anammox reactor. Knowledge of the dynamic changes in nitrogen removal rates and the microbial anammox community at low and/or ambient temperature is still limited. This study explored the response of an anammox sequencing batch reactor (SBR) to a gradient of decreasing temperature (33, 25, 20, 15, 10 °C), followed by recovery to 22 °C, over 360 days. Particularly, the specific anammox activity (SAA) and microbial community were assessed. The anammox reaction in the SBR remained stable and efficient at 20-33 °C, with a total nitrogen removal load of 0.4 g-N L-1 day-1 and an SAA of > 0.32 g-N g-VSS-1 day-1; 10 °C was the turning point for the anammox bacterial metabolic activity, at which the SAA decreased by 91% compared with that at 33 °C. After the temperature was returned to 22 °C, the anammox activity recovered to 0.24 g-N g-VSS-1 day-1. The apparent activation energy for the anammox reaction was 68.4 kJ mol-1 at 10-33 °C and 152.9 kJ mol-1 at 10-20 °C. High-throughput sequencing results revealed that Kuenenia was the dominant species of anammox bacteria, and Kuenenia had a higher tolerance to low temperature than Candidatus Brocadia and Candidatus Jettenia. This study clearly shows the effectiveness of anammox bioreactors for treatment of wastewater at ambient temperatures of 15-33 °C.


Subject(s)
Ammonia/metabolism , Bacteria, Anaerobic/metabolism , Bioreactors/microbiology , Microbiota , Temperature , Water Purification/methods , Anaerobiosis , Nitrogen/metabolism , Oxidation-Reduction , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/metabolism
2.
Water Res ; 73: 252-64, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25697691

ABSTRACT

Industrial wastewater containing heavy metals that enters municipal wastewater treatment plants inevitably has a toxic impact on biological treatment processes. In this study, the impact of Cu(II) (0, 1.5, 2, 2.5, 3 mg/L) on the performance of denitrifying phosphorus removal (DPR) and microbial community structures was investigated. Particularly, the dynamic change in the amount and composition of extracellular polymeric substances (EPS), and the role of EPS in P removal, were assessed using three-dimensional excitation-emission matrix fluorescence spectroscopy combined with parallel factor (PARAFAC) analysis. The results showed that, after long-term adjustment, the P removal efficiency was maintained at 95 ± 2.7% at Cu(II) addition up to 2.5 mg/L, but deteriorated when the Cu(II) addition was 3 mg/L. The EPS content, including proteins and humic substances, increased with increasing Cu(II) additions at concentrations ≤2.5 mg/L. This property of EPS was beneficial for protecting phosphate-accumulating organisms (PAOs) against heavy metals, as both proteins and humic substances are strong ligands for Cu(II). Therefore, the PAOs abundance was still relatively high (67 ± 3%) when Cu(II) accumulation in sludge was up to 10 mg/g SS. PARAFAC confirmed that aromatic proteins could be transformed into soluble microbial byproduct-like material when microorganisms were subjected to Cu(II) stress, owing to their strong metal ion complexing capacity. The increase in the percentage of humic-like substances enhanced the detoxification function of the sludge EPS. EPS accounted for approximately 26-47% of P removed by adsorption when Cu(II) additions were between 0 and 2.5 mg/L. The EPS function, including binding toxic heavy metals and P storage, enhanced the operating stability of DPR systems. This study provides us with a better understanding of (1) the tolerance of DPR sludge to copper toxicity and (2) the function of sludge EPS in the presence of heavy metals in biological P removal systems.


Subject(s)
Bacteria/metabolism , Copper/toxicity , Denitrification , Phosphorus/chemistry , Polymers/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Factor Analysis, Statistical , Organic Chemicals/metabolism , Sewage/analysis , Spectrometry, Fluorescence , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL