Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 34: 326-337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38274294

ABSTRACT

Atherosclerosis is a significant contributor to global cardiovascular disease. Reducing the formation of atherosclerotic plaque effectively can lead to a decrease in cardiovascular diseases. Therefore, controlling macrophage function is crucial. This study presents the creation of a bifunctional nanoparticle that is specific to macrophages to achieve intracellular and extracellular synergistic therapy for restoring macrophage functions. The nanoparticle is conjugated with anti-CD47 antibody to modulate extracellular CD47-SIRPα phagocytic signaling axis on the outer surface of macrophages and encapsulates the NLRP3 inhibitor (CY-09) to regulate intracellular inflammation response of macrophages. The results showed that the nanoparticles accumulate in the atherosclerotic plaque, alter macrophage phagocytosis, inhibit NLRP3 inflammasome activation, and decrease the plaque burden in Apoe-/- mice whilst ensuring safety. Examination of single-cell RNA sequencing indicates that this multifunctional nanoparticle decreases the expression of genes linked to inflammation and manages inflammatory pathways in the plaque lesion. This study proposes a synergistic therapeutic approach that utilizes a bifunctional nanoparticle, conjugated with anti-CD47, to regulate the microenvironment of plaques.

2.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38206130

ABSTRACT

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Triticum , Endosomal Sorting Complexes Required for Transport/metabolism , Triticum/genetics , Plant Breeding , Endosomes/metabolism , Pollen/genetics
3.
Front Plant Sci ; 14: 1229827, 2023.
Article in English | MEDLINE | ID: mdl-37745997

ABSTRACT

Wheat is a staple crop for the world's population, and there is constant pressure to improve grain yield, which is largely determined by plant architecture. SQUAMOSA promotor-binding protein-like (SPL) genes have been widely studied in rice, including their effects on plant architecture, grain development, and grain yield. However, the function of SPL homologous genes in wheat has not been well investigated. In this study, TaSPL14s and TaSPL17s, wheat's closest orthologous of OsSPL14, were functionally investigated using gene-editing assays, revealing that these genes redundantly influence plant height, tiller number, spike length, and thousand-grain weight (TGW). Bract outgrowth was frequently observed in the hexa-mutant, occasionally in the quintuple mutant but never in the wild type. Transcriptome analysis revealed that the expression of many spike development-associated genes was altered in taspl14taspl17 hexa-mutants compared to that in the wild type. In addition, we analyzed the sequence polymorphisms of TaSPL14s and TaSPL17s among wheat germplasm and found superior haplotypes of TaSPL17-A and TaSPL17-D with significantly higher TGW, which had been positively selected during wheat breeding. Accordingly, dCAPS and KASP markers were developed for TaSPL17-A and TaSPL17-D, respectively, providing a novel insight for molecular marker-assisted breeding in wheat. Overall, our results highlight the role of TaSPLs in regulating plant architecture and their potential application for wheat grain yield improvement through molecular breeding.

4.
Heliyon ; 9(8): e18731, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576216

ABSTRACT

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.

5.
Front Plant Sci ; 14: 1203253, 2023.
Article in English | MEDLINE | ID: mdl-37465391

ABSTRACT

Wheat grain has a complex structure that includes a crease on one side, and tissues within the crease region play an important role in nutrient transportation during wheat grain development. However, the genetic architecture of the crease region is still unclear. In this study, 413 global wheat accessions were resequenced and a method was developed for evaluating the phenotypic data of crease depth (CD). The CD values exhibited continuous and considerable large variation in the population, and the broad-sense heritability was 84.09%. CD was found to be positively correlated with grain-related traits and negatively with quality-related traits. Analysis of differentiation of traits between landraces and cultivars revealed that grain-related traits and CD were simultaneously improved during breeding improvement. Moreover, 2,150.8-Mb genetic segments were identified to fall within the selective sweeps between the landraces and cultivars; they contained some known functional genes for quality- and grain-related traits. Genome-wide association study (GWAS) was performed using around 10 million SNPs generated by genome resequencing and 551 significant SNPs and 18 QTLs were detected significantly associated with CD. Combined with cluster analysis of gene expression, haplotype analysis, and annotated information of candidate genes, two promising genes TraesCS3D02G197700 and TraesCS5A02G292900 were identified to potentially regulate CD. To the best of our knowledge, this is the first study to provide the genetic basis of CD, and the genetic loci identified in this study may ultimately assist in wheat breeding programs.

6.
Food Funct ; 13(9): 5177-5188, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35437565

ABSTRACT

As an essential microelement, copper plays a crucial role in the human body. However, the grains of bread wheat, a major crop food, contain a low copper content. Here, a diversity panel of 443 wheat accessions cultivated in four environments was used to analyse grain copper content by ICAP-7000, and the genetic variation in grain copper content was examined using a 660 K single nucleotide polymorphism chip. Phenotypic analysis indicated that the grain copper content varied between 2.58 mg kg-1 and 13.65 mg kg-1. A genome-wide association study identified 12 QTLs associated with grain copper content that showed significance in at least two environments on chromosomes 1A, 1D, 3D, 4A, 5A, 5D, 6B, 6D, 7A and 7D. Through haplotype analysis, the phenotypic difference between the haplotypes of three genes, TraesCS5D01G282300, TraesCS6B01G052900 and TraesCS7D01G146600, showed significance (P ⩽ 0.05) in four environments. They were considered to be important candidate genes for grain copper content in wheat. In addition, we detected that the grain copper content gradually decreased with release years among wheat accessions in China, and the percentage of favourable alleles showed a similar trend. Analysing the changes in grain copper content with yield factors, we found that the dilute effect was mainly caused by thousand kernel weight. This study provides useful information on the genetic basis for grain copper content, and thus helps in improving the wheat grain quality.


Subject(s)
Copper , Genome-Wide Association Study , Triticum , Edible Grain/genetics , Phenotype , Polymorphism, Single Nucleotide , Triticum/genetics
7.
J Inflamm Res ; 14: 1007-1017, 2021.
Article in English | MEDLINE | ID: mdl-33790616

ABSTRACT

BACKGROUND: Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) suppresses post-apoptotic necrosis and alleviates inflammation. Defective efferocytosis induces diseases that include atherosclerosis and autoimmune diseases. C1q/TNF-related protein 9 (CTRP9), a novel adipokine, has been reported to protect against various cardiovascular disease; however, the effect of CTRP9 on efferocytosis has not been elucidated. METHODS: 1. The efferocytosis of macrophages incubated with ACs with or without CTRP9 treatment was detected by flow cytometry (FCM) and immunostaining. The unengulfed ACs of CTRP9-KO and wild-type (WT) mice after dexamethasone injection were detected by TUNEL assay. 2. As mitochondrial fission is important for promoting efferocytosis, the effect of CTRP9 on mitochondrial fission was measured by fission/fusion-related proteins (MFN2, DRP1, MFF, and OPA1) and visualized by staining with MitoTracker. 3. On account of metabolism insults in engulfed macrophages, we conducted a two-stage efferocytosis assay, and the protective effects of CTRP9 on metabolism were investigated by Western blot. RESULTS: CTRP9 significantly facilitated macrophage efferocytosis, and it promoted mitochondrial fission by increasing the expression of p-DRP1 (s616) and the translocation of DRP1 from the cytoplasm to the mitochondria. The p38/Jnk-MAPK pathway was activated after treatment with 1 µg/mL CTRP9. When we blocked the activation of MAPK signaling by SB203580 and SP600125, the mediated effect on p-DRP1 (s616) was reduced. Moreover, CTRP9 increased the levels of ABCA1, PPAR-y, HIF-1a and GLUT1, as well as the release of lactate in basal and engulfed macrophages, which revealed that the metabolism of macrophages was advanced. Apoptotic cell-conditioned media (ACCM) and ACs increased the expression of adiponectin receptor 1 (AdipoR1). Down-regulation of AdipoR1 by siRNA could abrogate the immunometabolism effects of CTRP9. CONCLUSION: CTRP9 promoted efferocytosis in macrophages via MAPK/drp1-mediated mitochondrial fission and AdipoR1-induced immunometabolism.

9.
Mol Cell Endocrinol ; 522: 111138, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33352225

ABSTRACT

The apoptosis of foam cells leads to instability of atherosclerotic plaques. This study was designed to explore the protective role of CTRP9 in foam cell apoptosis. In our experiment, CTRP9 alleviated foam cell apoptosis. Meanwhile, CTRP9 upregulated the expression of proteins important for cholesterol efflux, such as LXRα, CYP27A1, ABCG1 and ABCA1, and improved cholesterol efflux in foam cells. Moreover, CTRP9 inhibited Wnt3a and ß-catenin expression and ß-catenin nuclear translocation in foam cells. In addition, adenovirus overexpression of Wnt3a abolished the effect of CTRP9 on macrophage apoptosis. Mechanistically, the AMPK inhibitor abolished the effect of CTRP9 on foam cell apoptosis, and downregulation of AdipoR1 by siRNA abrogated the activation of AMPK and the effect of CTRP9 on foam cell apoptosis. We concluded that CTRP9 achieved these protective effects on foam cells through the AdipoR1/AMPK pathway.


Subject(s)
Adiponectin/metabolism , Apoptosis , Cholesterol/metabolism , Foam Cells/cytology , Foam Cells/metabolism , Glycoproteins/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Adenylate Kinase/metabolism , Animals , Biological Transport , Humans , Hydrolysis , Lipid Metabolism , Lipids/biosynthesis , Liver X Receptors/metabolism , Mice, Inbred C57BL , PPAR gamma/metabolism , Receptors, Adiponectin/metabolism , THP-1 Cells , Wnt Signaling Pathway
10.
BMC Plant Biol ; 20(1): 395, 2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32854609

ABSTRACT

BACKGROUND: Fiber quality is an important economic trait of cotton, and its improvement is a major goal of cotton breeding. To better understand the genetic mechanisms responsible for fiber quality traits, we conducted a genome-wide association study to identify and mine fiber-quality-related quantitative trait loci (QTLs) and genes. RESULTS: In total, 42 single nucleotide polymorphisms (SNPs) and 31 QTLs were identified as being significantly associated with five fiber quality traits. Twenty-five QTLs were identified in previous studies, and six novel QTLs were firstly identified in this study. In the QTL regions, 822 genes were identified and divided into four clusters based on their expression profiles. We also identified two pleiotropic SNPs. The SNP locus i52359Gb was associated with fiber elongation, strength, length and uniformity, while i11316Gh was associated with fiber strength and length. Moreover, these two SNPs were nonsynonymous and located in genes Gh_D09G2376 and Gh_D06G1908, respectively. RT-qPCR analysis revealed that these two genes were preferentially expressed at one or more stages of cotton fiber development, which was consistent with the RNA-seq data. Thus, Gh_D09G2376 and Gh_D06G1908 may be involved in fiber developmental processes. CONCLUSIONS: The findings of this study provide insights into the genetic bases of fiber quality traits, and the identified QTLs or genes may be applicable in cotton breeding to improve fiber quality.


Subject(s)
Cotton Fiber/analysis , Genes, Plant , Genome-Wide Association Study , Gossypium/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Gossypium/anatomy & histology , Gossypium/physiology
11.
Exp Cell Res ; 395(1): 112194, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32712018

ABSTRACT

Inflammation plays a critical role in the development of atherosclerosis (AS), which has been identified as a major predisposing factor for stroke. Macrophages and VSMCs are associated with plaque formation and progression. Macrophages can dynamically change into two main functional phenotypes, namely M1 and M2, they can produce either pro-inflammatory or anti-inflammatory factors which may affect the outcome of inflammation. As a member of CTRPs family, CTRP9 has been reported play important protective roles in the cardiovascular system. However, whether CTRP9 can regulate macrophage activation status in inflammatory responses and have effect on VSMCs behaviors in co-culture system have not been fully investigated. In the present study, using peritoneal macrophages treated with CTRP9, we found that CTRP9 facilitated macrophages towards M1 phenotype, promoted TNF-α secretion and MMPs expression. CTRP9 showed synergistic effect with LPS in inducing M1 macrophages. In macrophages-VSMCs co-culture system, apoptosis and down-regulated proliferation of VSMCs were accelerated with CTRP9-treated macrophages. Then we attempted to explore the underlying molecular mechanisms of CTRP9 resulting in M1 activation. The c-Jun NH2-terminal kinases (JNK) are members of the mitogen activated protein kinases (MAPK) family, plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival. We found JNK expression was upregulated following CTRP9 stimulation, and inhibiting JNK phosphorylation level was associated with decreased expression of M1 markers and TNF-α concentration. Moreover, VSMCs apoptosis were ameliorated after inhibition of JNK. These results suggested that CTRP9 may promote macrophage towards M1 activation status through JNK signaling pathway activation.


Subject(s)
Adiponectin/pharmacology , Apoptosis/drug effects , Glycoproteins/pharmacology , Macrophage Activation/drug effects , Macrophages/drug effects , Muscle, Smooth, Vascular/drug effects , Adiponectin/metabolism , Animals , Coculture Techniques , Glycoproteins/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle, Smooth, Vascular/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Up-Regulation/drug effects
12.
Chem Biol Interact ; 329: 109094, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32278738

ABSTRACT

BACKGROUND: Oxidative stress in cardiac myocytes is an important pathogenesis of cardiac lipotoxicity. Autophagy is a cellular self-digestion process that can selectively remove damaged organelles under oxidative stress, and thus presents a potential therapeutic target against cardiac lipotoxicity. Globular CTRP9 (gCTRP9) is a newly identified adiponectin paralog with established metabolic regulatory properties. The aim of this work is to investigate whether autophagy participates the protection effects of gCTRP9 in neonatal rat cardiac myocytes (NRCMs) under oxidative stress and the underlying mechanism. RESULTS: NRCMs were treated with PA of various concentrations for indicated time period. Our results showed that PA enhanced intracellular ROS accumulation, decreased mitochondrial membrane potential (Δψm) and increased activation of caspases 3. These changes suggested lipotoxicity due to excessive PA. In addition, PA was observed to impair autophagic flux in NRCMs and impaired autophagosome clearance induced by PA contributes to cardiomyocyte death. Besides, we found that gCTRP9 increased the ratio of LC3II/I and the expression of ATG5 which was vital to the formation of autophagosomes and decreased the level of P62, suggesting enhanced autophagic flux in the absence or presence of PA. The result was further confirmed by the methods of infection with LC3-mRFP-GFP lentivirus and blockage of autophagosome-lysosome fusion by BafA1. Moreover, gCTRP9 reestablished the loss of mitochondrial membrane potential, suppressed ROS generation, and reduced PA -induced myocyte death. However, the protective effect of gCTRP9 on the cardiac lipotoxicity was partly abolished by blockade of autophagy by autophagy-related 5 (ATG5) siRNA, indicating that the effect of gCTRP9 on cell survival is critically mediated through regulation of autophagy. CONCLUSION: Autophagy induction by gCTRP9 could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.


Subject(s)
Adiponectin/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Palmitic Acid/pharmacology , Animals , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Caspase 3/metabolism , Cell Survival/drug effects , Cells, Cultured , Membrane Potential, Mitochondrial/drug effects , Microtubule-Associated Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism
13.
J Cell Mol Med ; 24(4): 2635-2647, 2020 02.
Article in English | MEDLINE | ID: mdl-31930700

ABSTRACT

CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high-fat diet (HFD)-induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD-induced obesity model in wild-type (WT) or CTRP9 knockout (CTRP9-KO) mice and palmitate-induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD-fed CTRP9-KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress-initiated apoptosis and oxidative stress compared with the HFD-fed WT mice. In vitro, CTRP9 treatment markedly alleviated palmitate-induced oxidative stress and ER stress-induced apoptosis in NRCMs in a dose-dependent manner. Phosphorylated AMPK at Thr172 was reduced, and phosphorylated mammalian target of rapamycin (mTOR) was strengthened in the heart of the HFD-fed CTRP9-KO mice compared with the HFD-fed control mice. In vitro, AMPK inhibitor compound C significantly abolished the effects of CTRP9 on the inhibition of the apoptotic pathway in palmitate-treated NRCMs. In a further mechanistic study, CTRP9 enhanced expression of phosphorylated LKB1 at Ser428 and promoted LKB1 cytoplasmic localization. Besides, silencing of LKB1 gene by lentivirus significantly prohibited activation of AMPK by CTRP9 and partially eliminated the protective effect of CTRP9 on the cardiac lipotoxicity. These results indicate that CTRP9 exerted anti-myocardial lipotoxicity properties and inhibited cardiac hypertrophy probably through the LKB1/AMPK signalling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Cardiomegaly/metabolism , Diet, High-Fat/adverse effects , Glycoproteins/metabolism , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Endoplasmic Reticulum Stress/physiology , Fibrosis/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/physiology , Phosphorylation/physiology
14.
Biochem Biophys Res Commun ; 523(1): 98-104, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31837806

ABSTRACT

The C1q tumor necrosis factor (TNF)-related proteins 9 (CTRP9), an adipocyte-derived cytokine, affects a number of physiological processes, including immune function and inflammation. We investigated whether CTRP9 affects the expression of inflammation-related genes in Raw 264.7 and peritoneal macrophages. The CTRP9-induced expression of iNOS increased in a time- and dose-dependent manner. LPS and CTRP9 promote the expression of iNOS jointly in Raw 264.7 and peritoneal macrophages. CTRP9 induced the phosphorylation of JAK2 and STAT3 in Raw 264.7 and peritoneal macrophages. VX509 (JAK2 inhibitor) reduced the CTRP9-induced iNOS protein production. In addition, the CTRP9-induced phosphorylation of JAK2 and STAT3 was dramatically reduced by VX509. Collectively, these results suggest that JAK2/STAT3 signaling is involved in the CTRP9-induced expression of iNOS.


Subject(s)
Adiponectin/metabolism , Glycoproteins/metabolism , Janus Kinase 2/metabolism , Macrophages, Peritoneal/metabolism , Nitric Oxide Synthase Type II/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Animals , Cells, Cultured , Mice , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells
15.
Theor Appl Genet ; 132(7): 1991-2002, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30982110

ABSTRACT

KEY MESSAGE: A genome-wide associated study identified six novel QTLs for lint percentage. Two candidate genes underlying this trait were also detected. Increasing lint percentage (LP) is a core goal of cotton breeding. To better understand the genetic basis of LP, a genome-wide association study (GWAS) was conducted using 276 upland cotton accessions planted in multiple environments and genotyped with a CottonSNP63K array. After filtering, 10,660 high-quality single-nucleotide polymorphisms (SNPs) were retained. Population structure, principal component and neighbor-joining phylogenetic tree analyses divided the accessions into two subpopulations. These results along with linkage disequilibrium decay indicated accessions were not highly structured and exhibited weak relatedness. GWAS uncovered 23 polymorphic SNPs and 15 QTLs significantly associated with LP, with six new QTLs identified. Two candidate genes, Gh_D05G0313 and Gh_D05G1124, both contained one significant SNP, highly expressed during ovule and fiber development stages, implying that the two genes may act as the most promising regulators of LP. Furthermore, the phenotypic value of LP was found to be positively correlated with the number of favorable SNP alleles. These favorable alleles for LP identified in the study may be useful for improving lint yield.


Subject(s)
Cotton Fiber , Gossypium/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genetic Association Studies , Genetics, Population , Genome, Plant , Genotype , Linkage Disequilibrium , Phenotype , Plant Breeding
16.
Front Genet ; 9: 494, 2018.
Article in English | MEDLINE | ID: mdl-30405700

ABSTRACT

Sucrose transporters (SUTs) play key roles in allocating the translocation of assimilates from source to sink tissues. Although the characteristics and biological roles of SUTs have been intensively investigated in higher plants, this gene family has not been functionally characterized in cotton. In this study, we performed a comprehensive analysis of SUT genes in the tetraploid cotton Gossypium hirsutum. A total of 18 G. hirsutum SUT genes were identified and classified into three groups based on their evolutionary relationships. Up to eight SUT genes in G. hirsutum were placed in the dicot-specific SUT1 group, while four and six SUT genes were, respectively, clustered into SUT4 and SUT2 groups together with members from both dicot and monocot species. The G. hirsutum SUT genes within the same group displayed similar exon/intron characteristics, and homologous genes in G. hirsutum At and Dt subgenomes, G. arboreum, and G. raimondii exhibited one-to-one relationships. Additionally, the duplicated genes in the diploid and polyploid cotton species have evolved through purifying selection, suggesting the strong conservation of SUT loci in these species. Expression analysis in different tissues indicated that SUT genes might play significant roles in cotton fiber elongation. Moreover, analyses of cis-acting regulatory elements in promoter regions and expression profiling under different abiotic stress and exogenous phytohormone treatments implied that SUT genes, especially GhSUT6A/D, might participate in plant responses to diverse abiotic stresses and phytohormones. Our findings provide valuable information for future studies on the evolution and function of SUT genes in cotton.

17.
Int J Mol Sci ; 19(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29517986

ABSTRACT

The SWEET (sugars will eventually be exported transporters) proteins are sugar efflux transporters containing the MtN3_saliva domain, which affects plant development as well as responses to biotic and abiotic stresses. These proteins have not been functionally characterized in the tetraploid cotton, Gossypium hirsutum, which is a widely cultivated cotton species. In this study, we comprehensively analyzed the cotton SWEET gene family. A total of 55 putative G. hirsutumSWEET genes were identified. The GhSWEET genes were classified into four clades based on a phylogenetic analysis and on the examination of gene structural features. Moreover, chromosomal localization and an analysis of homologous genes in Gossypium arboreum, Gossypium raimondii, and G. hirsutum suggested that a whole-genome duplication, several tandem duplications, and a polyploidy event contributed to the expansion of the cotton SWEET gene family, especially in Clade III and IV. Analyses of cis-acting regulatory elements in the promoter regions, expression profiles, and artificial selection revealed that the GhSWEET genes were likely involved in cotton developmental processes and responses to diverse stresses. These findings may clarify the evolution of G. hirsutum SWEET gene family and may provide a foundation for future functional studies of SWEET proteins regarding cotton development and responses to abiotic stresses.


Subject(s)
Evolution, Molecular , Gossypium/genetics , Monosaccharide Transport Proteins/genetics , Plant Proteins/genetics , Stress, Physiological , Chromosomes, Plant/genetics , Gene Duplication , Gossypium/classification , Gossypium/physiology , Monosaccharide Transport Proteins/metabolism , Multigene Family , Phylogeny , Plant Proteins/metabolism , Ploidies , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...