Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(15): 10710-10720, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35546088

ABSTRACT

Efficient degradation of organic pollutants by oxidative radicals is challenging in the complex soil environment because of the invalid consumption of radicals by nontarget background substances and the generation of secondary halogenated organic pollutants. Nonradical-based oxidation is a promising pollutant removal method due to its high selectivity and environmental adaptability. Herein, a biochar-supported sheetlike CuO (e-CuO@BC) was developed, which exhibited efficient activation of peroxydisulfate (PDS) via nonradical pathways. The activation mechanisms were identified as (i) formation of surface-bonding active complexes via an outer-sphere interaction between e-CuO@BC and PDS and (ii) the continuous generation of 1O2 by the cycling of the Cu(I)/Cu(II) redox couple. In addition, the activation of PDS primarily occurred at the crystal facet (001) of e-CuO occupied by Cu atoms and was well facilitated by the Cu-O-C bond, which induced electron-rich centers around CuO. Two oxidative species from PDS activation, including surface-bonding active complexes and 1O2, showed a highly selective degradation toward electron-rich pollutants. Moreover, a highly efficient mineralization of organic pollutants and an effective inhibition on the generation of toxic byproducts (i.e., halogenated organics) was indicated by the intermediate and final degradation products. This study provides a comprehensive understanding of the heterogeneous activation process of PS by the e-CuO@BC catalyst for electron-rich organic pollutant removal.


Subject(s)
Environmental Pollutants , Singlet Oxygen , Charcoal , Copper , Electrons
2.
Chem Commun (Camb) ; 56(90): 14019-14022, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33095217

ABSTRACT

We demonstrate a charge transfer boosted hydrogen (H2) evolution of transition metal oxides via a Schottky junction. The FeNi and metallic defect-rich CoFe2O4 (DCF) as well as semiconducting nitrogen-doped carbon (NC), named as FeNi/DCF/NC, possessed only 6.5% charge transfer resistance of DCF. Theoretical calculations indicate that the enhanced electron movement happened from FeNi/DCF to NC. The H2 evolution activity of FeNi/DCF/NC showed 5.8-fold improvement compared to that of DCF at the overpotential of 400 mV in 1.0 M KOH. This work provides an effective way to enhance the electrocatalytic activity of oxides for the H2 evolution reaction and related reactions.

3.
Angew Chem Int Ed Engl ; 59(47): 20794-20812, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-31912616

ABSTRACT

The evolution of hydrogen from water using renewable electrical energy is a topic of current interest. Pt/C exhibits the highest catalytic activity for the H2 evolution reaction (HER), but scarce supplies and high cost limit its large-scale application. Atomic active centers in single-atom catalysts, single-atom alloys, and catalysts with two atom sorts exhibit maximum atomic efficiency, unique structure, and exceptional activity for the HER. Interactions between well-defined active sites and supports are known to affect electron transfer and dramatically accelerate the reaction. This Review first highlights methods for studying atomic active centers for the HER. Then, active sites with different coordination configurations are described. Active centers with one metal atom, two different metal atoms as well as nonmetal atoms are analyzed at the atomic scale. Finally, future research perspectives are proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...