Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 322: 121099, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36682612

ABSTRACT

To improve the predictability of concentrations of atmospheric particulate matter, a data assimilation (DA) system using ensemble square root filter (EnSRF) has been developed for the Community Multiscale Air Quality (CMAQ) model. The EnSRF DA method is a deterministic variant of the ensemble Kalman filter (EnKF) method, which means that unlike the EnKF method, it does not add random noise to the observations. To compare the performances of the EnSRF with those of other DA methods, such as EnKF and 3DVAR (three-dimensional variational), these three methods were applied to the same CMAQ model simulations with identical experimental settings. This is the first attempt in the field of chemical DA to compare the EnKF and EnSRF methods. An identical set of surface fine particulate matter (PM2.5) were assimilated every 6 h by all the DA methods over a CMAQ domain of East Asia, during the period from 01 May to 11 June 2016. In parallel with 'reanalysis experiments', we also carried out '48 h prediction experiments' using the optimized initial conditions produced by the three DA methods. Detailed analyses among the three DA methods were then carried out by comparing both the reanalysis and the prediction outputs with the observed surface PM2.5 over four regions (i.e., South Korea, the Beijing-Tianjin-Hebei (BTH) region, Shandong province, and Liaoning province). The comparison results revealed that the EnSRF produced the best reanalysis and prediction fields in terms of several statistical metrics. For example, when the 3DVAR, EnKF, and EnSRF methods were used, averaged normalized mean biases (NMBs) decreased by (57.6, 85.6, and 91.8) % in reanalyses and (39.7, 87.6, and 91.5) % in first-day predictions, compared to the CMAQ control experiment (i.e., without DA) over South Korea, respectively. Also, over the three Chinese regions, the EnSRF method outperformed the EnKF and 3DVAR methods.


Subject(s)
Air Pollution , Models, Theoretical , Air Pollution/analysis , Particulate Matter/analysis , Republic of Korea , Asia, Eastern
2.
Sensors (Basel) ; 21(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572653

ABSTRACT

Weather is affected by a complex interplay of factors, including topography, location, and time. For the prediction of temperature in Korea, it is necessary to use data from multiple regions. To this end, we investigate the use of deep neural-network-based temperature prediction model time-series weather data obtained from an automatic weather station and image data from a regional data assimilation and prediction system (RDAPS). To accommodate such different types of data into a single model, a bidirectional long short-term memory (BLSTM) model and a convolutional neural network (CNN) model are chosen to represent the features from the time-series observed data and the RDAPS image data. The two types of features are combined to produce temperature predictions for up to 14 days in the future. The performance of the proposed temperature prediction model is evaluated by objective measures, including the root mean squared error and mean bias error. The experiments demonstrated that the proposed model combining both the observed and RDAPS image data is better in all performance measures for all prediction periods compared with the BLSTM-based model using observed data and the CNN-BLSTM-based model using RDAPS image data alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...