Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Differentiation ; 94: 58-70, 2017.
Article in English | MEDLINE | ID: mdl-28056360

ABSTRACT

Peripheral heterochromatin in mammalian nuclei is tethered to the nuclear envelope by at least two mechanisms here referred to as the A- and B-tethers. The A-tether includes lamins A/C and additional unknown components presumably INM protein(s) interacting with both lamins A/C and chromatin. The B-tether includes the inner nuclear membrane (INM) protein Lamin B-receptor, which binds B-type lamins and chromatin. Generally, at least one of the tethers is always present in the nuclear envelope of mammalian cells. Deletion of both causes the loss of peripheral heterochromatin and consequently inversion of the entire nuclear architecture, with this occurring naturally in rod photoreceptors of nocturnal mammals. The tethers are differentially utilized during development, regulate gene expression in opposite manners, and play an important role during cell differentiation. Here we aimed to identify the unknown chromatin binding component(s) of the A-tether. We analyzed 10 mouse tissues by immunostaining with antibodies against 7 INM proteins and found that every cell type has specific, although differentially and developmentally regulated, sets of these proteins. In particular, we found that INM protein LEMD2 is concomitantly expressed with A-type lamins in various cell types but is lacking in inverted nuclei of rod cells. Truncation or deletion of Lmna resulted in the downregulation and mislocalization of LEMD2, suggesting that the two proteins interact and pointing at LEMD2 as a potential chromatin binding mediator of the A-tether. Using nuclei of mouse rods as an experimental model lacking peripheral heterochromatin, we expressed a LEMD2 transgene alone or in combination with lamin C in these cells and observed no restoration of peripheral heterochromatin in either case. We conclude that in contrary to the B-tether, the A-tether has a more intricate composition and consists of multiple components that presumably vary, at differing degrees of redundancy, between cell types and differentiation stages.


Subject(s)
Cell Nucleus/genetics , Lamin Type A/genetics , Membrane Proteins/genetics , Nuclear Envelope/genetics , Nuclear Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Nucleus/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Lamin Type A/metabolism , Membrane Proteins/metabolism , Mice , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Transgenes
2.
Article in English | MEDLINE | ID: mdl-25170345

ABSTRACT

BACKGROUND: Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. RESULTS: Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2 (-/y) ) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2 (-/y) and Mecp2 (wt) mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2 (-/y) mice. CONCLUSIONS: MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.

3.
Chromosome Res ; 21(5): 535-54, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23996328

ABSTRACT

To improve light propagation through the retina, the rod nuclei of nocturnal mammals are uniquely changed compared to the nuclei of other cells. In particular, the main classes of chromatin are segregated in them and form regular concentric shells in order; inverted in comparison to conventional nuclei. A broad study of the epigenetic landscape of the inverted and conventional mouse retinal nuclei indicated several differences between them and several features of general interest for the organization of the mammalian nuclei. In difference to nuclei with conventional architecture, the packing density of pericentromeric satellites and LINE-rich chromatin is similar in inverted rod nuclei; euchromatin has a lower packing density in both cases. A high global chromatin condensation in rod nuclei minimizes the structural difference between active and inactive X chromosome homologues. DNA methylation is observed primarily in the chromocenter, Dnmt1 is primarily associated with the euchromatic shell. Heterochromatin proteins HP1-alpha and HP1-beta localize in heterochromatic shells, whereas HP1-gamma is associated with euchromatin. For most of the 25 studied histone modifications, we observed predominant colocalization with a certain main chromatin class. Both inversions in rod nuclei and maintenance of peripheral heterochromatin in conventional nuclei are not affected by a loss or depletion of the major silencing core histone modifications in respective knock-out mice, but for different reasons. Maintenance of peripheral heterochromatin appears to be ensured by redundancy both at the level of enzymes setting the epigenetic code (writers) and the code itself, whereas inversion in rods rely on the absence of the peripheral heterochromatin tethers (absence of code readers).


Subject(s)
Cell Nucleus/genetics , Epigenesis, Genetic , Euchromatin/genetics , Heterochromatin/genetics , Retina/metabolism , Animals , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Epigenomics , Euchromatin/metabolism , Euchromatin/ultrastructure , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Histones/metabolism , Mice , Mice, Knockout , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Sex Chromatin , X Chromosome , X Chromosome Inactivation
4.
BMC Plant Biol ; 13: 77, 2013 May 05.
Article in English | MEDLINE | ID: mdl-23642214

ABSTRACT

BACKGROUND: Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. RESULTS: We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. CONCLUSIONS: Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice, which is concomitant with epigenetic alterations. Perturbed expression by tissue culture of a set of 41 genes encoding for enzymes involved in DNA repair and DNA methylation is associated with both genetic and epigenetic alterations. There exist fundamental differences among distinct genotypes, pure-lines, hybrids and tetraploids, in propensities of generating both genetic and epigenetic alterations under the tissue culture condition. Parent-of-origin has a conspicuous effect on the alteration frequencies.


Subject(s)
Epigenesis, Genetic , Oryza/genetics , Polyploidy , DNA Methylation , DNA, Plant/genetics , Genotype , Inbreeding , Oryza/physiology , Phenotype , Plant Proteins/genetics , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...