Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792481

ABSTRACT

Background/Objectives: This study explores the impact of QMAC-DST, a rapid, fully automated phenotypic drug susceptibility test (pDST), on the treatment of tuberculosis (TB) patients. Methods: This pre-post comparative study, respectively, included pulmonary TB patients who began TB treatment between 1 December 2020 and 31 October 2021 (pre-period; pDST using the Löwenstein-Jensen (LJ) DST (M-kit DST)) and between 1 November 2021 and 30 September 2022 (post-period; pDST using the QMAC-DST) in five university-affiliated tertiary care hospitals in South Korea. We compared the turnaround times (TATs) of pDSTs and the time to appropriate treatment for patients whose anti-TB drugs were changed based on these tests between the groups. All patients were permitted to use molecular DSTs (mDSTs). Results: A total of 182 patients (135 in the M-kit DST group and 47 in the QMAC-DST group) were included. The median TAT was 36 days for M-kit DST (interquartile range (IQR), 30-39) and 12 days for QMAC-DST (IQR, 9-15), with the latter being significantly shorter (p < 0.001). Of the total patients, 10 (5.5%) changed their anti-TB drugs based on the mDST or pDST results after initiating TB treatment (8 in the M-kit DST group and 2 in the QMAC-DST group). In the M-kit DST group, three (37.5%) patients changed anti-TB drugs based on the pDST results. In the QMAC-DST group, all changes were due to mDST results; therefore, calculating the time to appropriate treatment for patients whose anti-TB drugs were changed based on pDST results was not feasible. In the QMAC-DST group, 46.8% of patients underwent the first-line line probe assay compared to 100.0% in the M-kit DST group (p < 0.001), indicating that rapid QMAC-DST results provide quicker assurance of the ongoing treatment by confirming susceptibility to the current anti-TB drugs. Conclusions: QMAC-DST delivers pDST results more rapidly than LJ-DST, ensuring faster confirmation for the current treatment regimen.

2.
Front Plant Sci ; 13: 888290, 2022.
Article in English | MEDLINE | ID: mdl-35432427

ABSTRACT

Clavibacter michiganensis, a Gram-positive plant-pathogenic bacterium, utilizes apoplastic effectors for disease development in host plants. Here, we determine the roles of Pat-1Cm (a putative serine protease) in pathogenicity and plant immunity. Pat-1Cm was found to be a genuine secreted protein, and the secreted mature form did not carry the first 33 amino acids predicted to be a signal peptide (SP). The pat-1Cm mutant impaired to cause wilting, but still caused canker symptom in tomato. Moreover, this mutant failed to trigger the hypersensitive response (HR) in a nonhost Nicotiana tabacum. Among orthologs and paralogs of pat-1Cm , only chp-7Cs from Clavibacter sepedonicus, a potato pathogen, successfully complemented pat-1Cm function in pathogenicity in tomato, whereas all failed to complement pat-1Cm function in HR induction in N. tabacum. Based on the structural prediction, Pat-1Cm carried a catalytic triad for putative serine protease, and alanine substitution of any amino acids in the triad abolished both pathogenicity and HR-inducing activities of Pat-1Cm in C. michiganensis. Ectopic expression of pat-1Cm with an SP from tobacco secreted protein triggered HR in N. tabacum, but not in tomato, whereas a catalytic triad mutant failed to induce HR. Inoculation of the pat-1Cm mutant mixed with the mutant of another apoplastic effector CelA (cellulase) caused severe wilting in tomato, indicating that these two apoplastic effectors can functionally cooperate in pathogenicity. Overall, these results indicate that Pat-1Cm is a distinct secreted protein carrying a functional catalytic triad for serine protease and this enzymatic activity might be critical for both pathogenicity and HR-eliciting activities of Pat-1Cm in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...