Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Lipid Res ; : 100576, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866328

ABSTRACT

Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis and fecal neutral steroid excretion. CONCLUSIONS: MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.

3.
Hepatology ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943861

ABSTRACT

BACKGROUND AND AIMS: Hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia are interconnected metabolic disorders. This study is designed to characterize how microRNA-206-3p (miR-206) simultaneously prevents de novo lipogenesis (DNL), cholesterol synthesis, and VLDL production in hepatocytes while promoting cholesterol efflux in macrophages. APPROACH AND RESULTS: MiR-206 levels were reduced in hepatocytes and macrophages of mice subjected to a high-fat, high-cholesterol diet. A negative feedback between LXRα (liver X receptor alpha) and miR-206 is formed to maintain high LXRα and low miR-206 in hepatocytes. Systemic administration of miR-206 alleviated hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia in mice. A significant reduction in LDL cholesterol and VLDL cholesterol but unaltered HDL cholesterol was observed in miR-206-treated mice. Mirroring these findings, miR-206 reprogrammed the transcriptome of hepatocytes towards the inhibition of DNL, cholesterol synthesis, and assembly and secretion of VLDL. In macrophages, miR-206 activated the expression of genes regulating cholesterol efflux. Hepatocyte-specific expression of miR-206 reduced hepatic and circulating triglycerides and cholesterol, as well as VLDL production, while transplantation of macrophages bearing miR-206 facilitated cholesterol efflux. Mechanistically, miR-206 directly targeted Lxrα and Hmgcr in hepatocytes but facilitated expression of Lxrα in macrophages by targeting macrophage-specific tricho-rhino-phalangeal syndrome 1 (TRPS1), a transcription repressor of Lxrα . By targeting Hmgc r and Lxrα , miR-206 inhibited DNL, VLDL production, and cholesterol synthesis in hepatocytes, whereas it drove cholesterol efflux by activating the TRPS1-LXRα axis. CONCLUSIONS: MiR-206, through differentially modulating LXRα signaling in hepatocytes and macrophages, inhibits DNL, promotes cholesterol efflux, and concurrently hinders cholesterol synthesis and VLDL production. MiR-206 simulates the functions of lipid-lowering medications, statins, and LXRα agonists.

4.
Sci Bull (Beijing) ; 68(24): 3172-3180, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37839915

ABSTRACT

A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen. By modulating the lattice of iron phthalocyanine (FePc) as a model catalyst, the unique electronic axial stretching in the z-direction of planar FePc molecules was realized to achieve a boosted adsorption and electron transfer and result in a much improved ORR activity in lean-oxygen seawater environment. The peak power density of a homemade SWB using a practical carbon brush electrode decorated by the FePc is estimated to be as high as 3 W L-1. These results provide inspiring insights into the interaction between the catalyst and complicated seawater environment, and propose the electronic axial stretching as an effective indicator for the rational design of catalysts to be used in extremely lean-oxygen environment.

5.
Cell Death Dis ; 14(9): 582, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658050

ABSTRACT

Chemotherapy represents a major type of clinical treatment against colorectal cancer (CRC). Aberrant drug efflux mediated by transporters acts as a key approach for tumor cells to acquire chemotherapy resistance. Increasing evidence implies that tumor-associated macrophages (TAMs) play a pivotal role in both tumorigenesis and drug resistance. Nevertheless, the specific mechanism through which TAMs regulate drug efflux remains elusive. Here, we discovered that TAMs endow CRC cells with resistance to 5-fluorouracil (5-FU) treatment via a cell-cell interaction-mediated MRP1-dependent drug efflux process. Mechanistically, TAM-secreted C-C motif chemokine ligand 17 (CCL17) and CCL22, via membrane receptor CCR4, activated the PI3K/AKT pathway in CRC tumor cells. Specifically, phosphorylation of AKT inactivated IP3R and induced calcium aggregation in the ER, resulting in the activation of ATF6 and upregulation of GRP78. Accordingly, excessive GRP78 can interact with MRP1 and promote its translocation to the cell membrane, causing TAM-induced 5-FU efflux. Taken together, our results demonstrated that TAMs promote CRC chemotherapy resistance via elevating the expression of GRP78 to promote the membrane translocation of MRP1 and drug efflux, providing direct proof for TAM-induced drug resistance.


Subject(s)
Colorectal Neoplasms , Endoplasmic Reticulum Chaperone BiP , Humans , Tumor-Associated Macrophages , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Fluorouracil/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Activating Transcription Factor 6 , Receptors, CCR4 , Chemokines, CXC
6.
Oncogene ; 42(39): 2892-2904, 2023 09.
Article in English | MEDLINE | ID: mdl-37596320

ABSTRACT

Hepatic cholesterol accumulation and hypercholesterolemia are implicated in hepatocellular carcinoma (HCC). However, the therapeutic effects of cholesterol-lowering drugs on HCC are controversial, indicating that the relationship between cholesterol metabolism and HCC is more complex than anticipated. A positive feedback between cholesterol synthesis and the pentose phosphate pathway (PPP) rather than glycolysis was formed in tumors of c-Myc mice. Blocking the PPP prevented cholesterol synthesis and thereby HCC in c-Myc mice, while ablating glycolysis did not affect cholesterol synthesis and failed to prevent c-Myc-induced HCC. Unexpectedly, HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) and G6PD (glucose-6-phosphate dehydrogenase), the rate-limiting enzymes of cholesterol synthesis and the PPP, were identified as direct targets of microRNA-206. By targeting Hmgcr and G6pd, microRNA-206 disrupted the positive feedback and fully prevented HCC in c-Myc mice, while 100% of control mice died of HCC. Disrupting the interaction of microRNA-206 with Hmgcr and G6pd restored cholesterol synthesis, the PPP and HCC growth that was inhibited by miR-206. This study identified a previously undescribed positive feedback loop between cholesterol synthesis and the PPP, which drives HCC, while microRNA-206 prevents HCC by disrupting this loop. Cholesterol synthesis as a process rather than cholesterol itself is the major contributor of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Pentose Phosphate Pathway , Feedback , Glycolysis , MicroRNAs/genetics , MicroRNAs/metabolism , Cholesterol
7.
Cell Biosci ; 12(1): 192, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457036

ABSTRACT

BACKGROUND: Inhibitors of ornithine decarboxylase (ODC) are effective at preventing colorectal cancer (CRC). However, their high toxicity limits their clinical application. This study was aimed to explore the potential of microRNAs (miRNAs) as an inhibitor of ODC. METHODS: miRNA array was used to identify dysregulated miRNAs in CRC tumors of mice and patients. Azoxymethane (AOM)/Dextran Sodium Sulfate (DSS) were used to induce CRC in mice. miRNA function in carcinogenesis was determined by soft-agar colony formation, flow cytometry, and wound healing of CRC cells. Mini-circle was used to deliver miRNA into colons. RESULTS: MiRNA profiling identified miR-378a-3p (miR-378a) as the most reduced miRNA in CRC tumors of patients and mice treated with AOM/DSS. Pathway array analysis revealed that miR-378a impaired c-MYC and ODC1 pathways. Further studies identified FOXQ1 (forkhead box Q1) and ODC1 as two direct targets of miR-378a. FOXQ1 activated transcription of c-MYC, a transcription activator of ODC1. In addition to directly targeting ODC1, miR-378a also inhibited expression of ODC1 via the FOXQ1-cMYC axis, thereby inhibiting polyamine synthesis in human CRC cells. Phenotypically, by reducing polyamine synthesis, miR-378a induced apoptosis and inhibited proliferation and migration of CRC cells, while disrupting the association of miR-378a with FOXQ1 and ODC1 offset the effects of miR-378a, suggesting that FOXQ1 and ODC1 were required for miR-378a to inhibit CRC cell growth. MiR-378a treatment robustly prevented growth of HCC by inhibiting polyamine synthesis in AOM/DSS mice. CONCLUSION: MiR-378a prevents CRC by inhibiting polyamine synthesis, suggesting its use as a novel ODC inhibitor against CRC.

8.
Front Microbiol ; 13: 890973, 2022.
Article in English | MEDLINE | ID: mdl-35756048

ABSTRACT

Aiming to reveal the variation in bacteria community under oxygen depletion formed every summer in water column of central Bohai Sea, a time-scenario sampling from June to August in 2018 at a 20-day interval along one inshore-offshore transect was settled. Water samples were collected at the surface, middle, and bottom layer and then analyzed by high-throughput sequencing targeting both 16S rRNA and nosZ genes. Compared to the surface and middle water, oxygen depletion occurred at bottom layer in August. In top two layers, Cyanobacteria dominated the bacterial community, whereas heterotrophic bacteria became dominant in bottom water of Bohai Sea. Based on the time scenario, distinct community separation was observed before (June and July) and after (August) oxygen depletion (p = 0.003). Vertically, strict stratification of nosZ gene was stably formed along 3 sampling layers. As a response to oxygen depletion, the diversity indices of both total bacteria (16S rRNA) and nosZ gene-encoded denitrification bacteria all increased, which indicated the intense potential of nitrogen lose when oxygen depleted. Dissolved oxygen (DO) was the key impacting factor on the community composition of total bacteria in June, whereas nutrients together with DO play the important roles in August for both total and denitrifying bacteria. The biotic impact was revealed further by strong correlations which showed between Cyanobacteria and heterotrophic bacteria in June from co-occurrence network analysis, which became weak in August when DO was depleted. This study discovered the variation in bacteria community in oxygen-depleted water with further effort to understand the potential role of denitrifying bacteria under oxygen depletion in Bohai Sea for the first time, which provided insights into the microbial response to the world-wide expanding oxygen depletion and their contributions in the ocean nitrogen cycling.

9.
Hepatol Commun ; 6(7): 1652-1663, 2022 07.
Article in English | MEDLINE | ID: mdl-35338607

ABSTRACT

Hepatitis B virus (HBV) infection is a major risk factor of liver cirrhosis and hepatocellular carcinoma. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to precisely edit the HBV genome and eliminate HBV through non-homologous end-joining repair of double-stranded break (DSB). However, the CRISPR/Cas9-mediated DSB triggers instability of host genome and exhibits low efficiency to edit genome, limiting its application. CRISPR cytidine base editors (CBEs) could silence genes by generating a premature stop codon. Here we developed a CRISPR base editor approach to precisely edit single nucleotide within the HBV genome to impair HBV gene expression. Specifically, a single-guide RNA (sgRNA) was designed to edit the 30th codon of HBV S gene, which encodes HBV surface antigen (HBsAg), from CAG (glutamine) to stop codon TAG. We next used human hepatoma PLC/PRF/5 cells carrying the HBV genome to establish a cell line that expresses a CBE (PLC/PRF/5-CBE). Lentivirus was used to introduce sgRNA into PLC/PRF/5-CBE cells. Phenotypically, 71% of PLC/PRF/5-CBE cells developed a premature stop codon within the S gene. Levels of HBs messenger RNA were significantly decreased. A 92% reduction of HBsAg secretion was observed in PLC/PRF/5-CBE cells. The intracellular HBsAg was also reduced by 84% after treatment of gRNA_S. Furthermore, no off-target effect was detected in predicted off-target loci within the HBV genome. Sequencing confirmed that 95%, 93%, 93%, 9%, and 72% S gene sequences of HBV genotypes B, C, F, G, and H had the binding site of sgRNA. Conclusion: Our findings indicate that CRISPR-mediated base editing is an efficient approach to silence the HBV S gene, suggesting its therapeutic potential to eliminate HBV.


Subject(s)
Hepatitis B virus , Hepatitis B , CRISPR-Cas Systems/genetics , Codon, Nonsense , Hepatitis B/genetics , Hepatitis B Surface Antigens , Hepatitis B virus/genetics , Humans , RNA, Guide, Kinetoplastida/genetics
10.
Mar Pollut Bull ; 174: 113300, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090283

ABSTRACT

We investigated the bio- and photo-lability of dissolved organic matter (DOM) from the head, mixing zone, and mouth of the Pearl River estuary. At all three sites, bio- and photo-refractory dissolved organic carbon (DOC) and biorefractory chromophoric DOM (CDOM) dominated over the corresponding bio- and photo-labile constituents, while photolabile CDOM dominated over photo-refractory CDOM. Relative to the mixing-zone and mouth waters, the headwater was enriched with bio- and photo-labile DOC and photolabile CDOM and depleted with biolabile CDOM. Biolabile DOC was richer than photolabile DOC in the headwater, while photolabile CDOM was richer than biolabile CDOM at all three sites. Pre-biotransformation inhibited, stimulated, or had little impact on DOM photodegradation, depending on site. Ultra-violet absorption coefficients are indicators of bio- and photo-refractory DOC. The relative proportions of transparent and chromophoric DOM control the turnover of biolabile DOC and the effect of pre-biotransformation on DOM photodegradation.


Subject(s)
Estuaries , Rivers , Dissolved Organic Matter , Photolysis
11.
Gastroenterology ; 162(2): 575-589, 2022 02.
Article in English | MEDLINE | ID: mdl-34678217

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is characterized by intratumoral accumulation of regulatory T cells (Tregs), which suppresses antitumor immunity. This study was designed to investigate how microRNAs regulate immunosuppression in HCC. METHODS: FVB/NJ mice were hydrodynamically injected with AKT/Ras or c-Myc and Sleeping Beauty transposon to induce HCC. The Sleeping Beauty system was used to deliver microRNA-15a/16-1 into livers of mice. Flow cytometry and immunostaining were used to determine changes in the immune system. RESULTS: Hydrodynamic injection of AKT/Ras or c-Myc into mice resulted in hepatic enrichment of Tregs and reduced cytotoxic T cells (CTLs) and HCC development. HCC impaired microRNA-15a/16-1 biogenesis in Kupffer cells (KCs) of AKT/Ras and c-Myc mice. Hydrodynamic injection of microRNA-15a/16-1 fully prevented HCC in AKT/Ras and c-Myc mice, while 100% of control mice died of HCC. Therapeutically, microRNA-15a/16-1 promoted a regression of HCC in both mouse models, impaired hepatic enrichment of Tregs, and increased hepatic CTLs. Mechanistically, a significant increase was observed in serum C-C motif chemokine 22 (CCL22) and transcription of Ccl22 in KCs of AKT/Ras and c-Myc mice. MicroRNA-15a/16-1 prevented KCs from overproducing CCL22 by inhibiting nuclear factor-κB that activates transcription of Ccl22. By reducing CCL22 binding to C-C chemokine receptor type 4 on Tregs, microRNA-15a/16-1 impaired Treg chemotaxis. Disrupting the interaction between microRNA-15a/16-1 and nuclear factor-κB impaired the ability of microRNA-15a/16-1 to prevent hepatic Treg accumulation and HCC. Depletion of cluster of differentiation 8+ T cells and additional treatment of CCL22 recovered growth of HCC that was fully prevented by microRNA-15a/16. CONCLUSIONS: MicroRNA-15a/16-1 attenuates immunosuppression by disrupting CCL22-mediated communication between KCs and Tregs. MicroRNA-15a/16-1 represents a potential immunotherapy against HCC.


Subject(s)
Carcinoma, Hepatocellular/immunology , Kupffer Cells/immunology , Liver Neoplasms, Experimental/immunology , MicroRNAs/genetics , T-Lymphocytes, Regulatory/immunology , Tumor Escape/immunology , Animals , Carcinoma, Hepatocellular/genetics , Kupffer Cells/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms, Experimental/genetics , Mice , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-myc , T-Lymphocytes, Regulatory/metabolism , Tumor Escape/genetics , ras Proteins
12.
Hepatology ; 76(1): 32-47, 2022 07.
Article in English | MEDLINE | ID: mdl-34606648

ABSTRACT

BACKGROUND AND AIMS: Intertumoral accumulation of regulatory T cells (Tregs) has been implicated in the pathogenesis of HCC. Because of poor understanding of the immunosuppression mechanism(s) in HCC, immunotherapy is largely unsuccessful for the treatment of HCC. APPROACH AND RESULTS: Hydrodynamic injection (HDI) of c-Myc into mice resulted in enlarged spleens and lethal HCC associated with an increase in hepatic Tregs and depletion of CTLs (cytotoxic T lymphocytes). Malignant hepatocytes in c-Myc mice overproduced TGFß1, which enhanced the suppressor function of Tregs and impaired the proliferation and cytotoxicity of CTLs. In addition to activating TGFß signaling, c-Myc synergized with Yin Yang 1 to impair microRNA-206 (miR-206) biogenesis. HDI of miR-206 fully prevented HCC and the associated enlargement of the spleen, whereas 100% of control mice died from HCC within 5-9 weeks postinjection. Mechanistically, by directly targeting errant kirsten ras oncogene (KRAS) signaling, miR-206 impeded the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) axis that drives expression of Tgfb1. By blocking the KRAS/MEK/ERK axis, miR-206 prevented TGFß1 overproduction, thereby impairing the suppressor function and expansion of Tregs, but enhancing the expansion and cytotoxic program of CTLs. Disrupting the interaction between miR-206 and Kras offset the roles of miR-206 in inhibiting immunosuppression and HCC. Depletion of CD8+ T cells impaired the ability of miR-206 to inhibit HCC. CONCLUSIONS: c-Myc-educated hepatocytes promoted immunosuppression by overproducing TGFß1, which promoted HCC development. miR-206, by attenuating TGFß1 overproduction, disrupted the communication of malignant hepatocytes with CTLs and Tregs, which prevented HCC. miR-206 represents a potential immunotherapeutic agent against HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Communication , Gene Expression Regulation, Neoplastic , Hepatocytes/metabolism , Liver Neoplasms/pathology , Mice , MicroRNAs/therapeutic use , Mitogen-Activated Protein Kinase Kinases , Proto-Oncogene Proteins p21(ras) , T-Lymphocytes, Regulatory/metabolism
13.
Gut ; 71(8): 1642-1655, 2022 08.
Article in English | MEDLINE | ID: mdl-34706869

ABSTRACT

OBJECTIVE: Kupffer cells (KCs) protect against hepatocellular carcinoma (HCC) by communicating with other immune cells. However, the underlying mechanism(s) of this process is incompletely understood. DESIGN: FVB/NJ mice were hydrodynamically injected with AKT/Ras and Sleeping Beauty transposon to induce HCC. Mini-circle and Sleeping Beauty were used to overexpress microRNA-206 in KCs of mice. Flow cytometry and immunostaining were used to evaluate the change in the immune system. RESULTS: Hydrodynamic injection of AKT/Ras into mice drove M2 polarisation of KCs and depletion of cytotoxic T cells (CTLs) and promoted HCC development. M1-to-M2 transition of KCs impaired microRNA-206 biogenesis. By targeting Klf4 (kruppel like factor 4) and, thereby, enhancing the production of M1 markers including C-C motif chemokine ligand 2 (CCL2), microRNA-206 promoted M1 polarisation of macrophages. Indeed, microRNA-206-mediated increase of CCL2 facilitated hepatic recruitment of CTLs via CCR2. Disrupting each component of the KLF4/CCL2/CCR2 axis impaired the ability of microRNA-206 to drive M1 polarisation of macrophages and recruit CTLs. In AKT/Ras mice, KC-specific expression of microRNA-206 drove M1 polarisation of KCs and hepatic recruitment of CTLs and fully prevented HCC, while 100% of control mice died from HCC. Disrupting the interaction between microRNA-206 and Klf4 in KCs and depletion of CD8+ T cells impaired the ability of miR-206 to prevent HCC. CONCLUSIONS: M2 polarisation of KCs is a major contributor of HCC in AKT/Ras mice. MicroRNA-206, by driving M1 polarisation of KCs, promoted the recruitment of CD8+ T cells and prevented HCC, suggesting its potential use as an immunotherapeutic approach.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular/pathology , Chemokines/metabolism , Kupffer Cells/metabolism , Liver Neoplasms/pathology , Mice , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Theranostics ; 10(9): 3952-3966, 2020.
Article in English | MEDLINE | ID: mdl-32226531

ABSTRACT

Rationale: Hyperlipidemia is a major risk factor of atherosclerosis and cardiovascular diseases (CVD). As a standard-of-care approach for hyperlipidemia, statins only reduce the risk of coronary artery disease by 20-40%, underscoring the importance of identifying molecular pathways for the design of drugs against this disorder. Alterations in microRNA (miRNA) expression have been reported in patients with hyperlipidemia and CVD. This study was designed to determine the mechanism of dysregulated miR-378a-3p under the status of hyperlipidemia and evaluate how miR-378a-3p regulates hepatic secretion of VLDL. Methods: Wild-type mice kept on a high fat diet were injected with miR-378a-3p inhibitor or a mini-circle expression system containing miR-378a precursor to study loss and gain-of functions of miR-378a-3p. Mice were treated with Triton WR1339 and 35S-methionine/cysteine to determine the effect of miR-378a-3p on hepatic secretion of VLDL. Database mining, luciferase assay, and ChIP (chromatin immunoprecipitation) were used to study the mechanism of dysregulated miR-378a-3p biogenesis. Results: miR-378a-3p expression is significantly increased in livers of hyperlipidemic mice. Sort1 (sortilin 1) was identified as a direct target of miR-378a-3p. By inhibiting the function of sortilin 1 as a transmembrane trafficking receptor, miR-378a-3p stabilized ApoB100 and promoted ApoB100 secretion in vitro. Liver-specific expression of miR-378a-3p stabilized ApoB100 and facilitated hepatic secretion of VLDL, which subsequently increased levels of VLDL/LDL cholesterol as well as triglycerides. In contrast, antagonizing miR-378a-3p using its inhibitor increased hepatic expression of Sort1 and reduced hepatic export of VLDL with its consequent effects of serum lipid levels. Additional knockdown of up-regulated Sort1 in livers of mice offset the effects of miR-378a-3p inhibitor, suggesting that Sort1 was indispensable for miR-378a-3p to promote secretion of VLDL and thereby high levels of circulating VLDL/LDL cholesterol and triglycerides. Furthermore, oncogenic E2F1 (E2F transcription factor 1) was identified as a transcriptional activator of miR-378a-3p. E2f1 knockdown, through reducing miR-378a-3p, impaired secretion of VLDL and reduced levels of VLDL/LDL cholesterol and triglycerides. Conclusions: This study defines a novel pathway of E2F1-miR-378a-3p-SORT1-ApoB100 that controls levels of circulating VLDL/LDL cholesterol and triglycerides by modulating degradation and secretion of ApoB100, and suggests the use of miR-378a-3p as a potential therapeutic target for dyslipidemia.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Apolipoprotein B-100/metabolism , Hyperlipidemias/metabolism , Lipoproteins, VLDL/metabolism , Liver/metabolism , MicroRNAs/physiology , Animals , Cholesterol, LDL/metabolism , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Triglycerides/metabolism
15.
Cell Signal ; 60: 1-16, 2019 08.
Article in English | MEDLINE | ID: mdl-30959099

ABSTRACT

Glucose-regulated protein 78 (GRP78), an important molecular chaperone in the endoplasmic reticulum, is often over-expressed in the central region of advanced tumor and acts as a promoter of tumor progression. As main immune cells in the tumor microenvironment, infiltration of abundant macrophages into advanced tumor further facilitates growth of tumor. Although has potential association between GRP78 and infiltration of macrophages, its underlying mechanisms are poorly understood. Here, we report that secreted GRP78 facilitates recruitment of macrophages into tumors both in vitro and in vivo. Further studies reveal that secreted GRP78 transports into macrophages and bound to intracellular Ca2+, which lead to uneven distribution of Ca2+ and subsequent polarization of macrophages. The polarization of macrophages activates expression of microRNA-200b-3p. By directly targeting RhoGDI, miR-200b-3p stimulates the activity of RhoGTPase and ultimately leads to the distribution of GTP-Rac1 and GTP-Cdc42 in front protrusion and GTP-RhoA in rear contraction, which further results in migration of macrophages in a certain direction. Our results reveal a novel function of GRP78 to promote the recruitment of macrophages to tumor and provide a potential therapeutic target for malignancies.


Subject(s)
Cell Movement/physiology , Heat-Shock Proteins/physiology , Neoplasm Proteins/physiology , Neoplasms/metabolism , Animals , Calcium/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Endoplasmic Reticulum Chaperone BiP , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , RAW 264.7 Cells , Tumor Microenvironment/physiology
16.
Hepatology ; 69(4): 1488-1503, 2019 04.
Article in English | MEDLINE | ID: mdl-30281809

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a major risk factor of many end-stage liver diseases. Alterations in microRNA expression have been reported in patients with NAFLD. However, the transcriptional mechanism(s) of dysregulated microRNAs under the state of NAFLD is poorly described, and microRNAs that regulate the pathogenesis of NAFLD synergistically with their regulators remain unknown. Here we report that microRNA-378 expression is significantly increased in fatty livers of mice and patients with NAFLD. Although microRNA-378 locates within the intron of Ppargc1ß (peroxisome proliferator-activated receptor γ coactivator 1-beta), there was a significant uncoupling of Ppargc1ß mRNA and microRNA-378 levels in both sources of fatty livers. Further studies identified a full-length primary transcript of microRNA-378. LXRα (liver X receptor alpha) functioned as a transcription activator of microRNA-378 and a repressor of Ppargc1ß transcription. It is known that miR-378 is an inhibitor of fatty acid oxidation (FAO) and the function of Ppargc1ß is opposite to that of miR-378. GW3965 treatment (LXRα agonist) of murine hepatocytes and mice increased microRNA-378 and reduced Ppargc1ß, which subsequently impaired FAO and aggravated hepatosteatosis. In contrast, additional treatment of miR-378 inhibitor or Ppargc1ß, which knocked down increased miR-378 or recovered expression of Ppargc1ß, offset the effects of GW3965. Liver-specific ablation of Lxrα led to decreased miR-378 and increased Ppargc1ß, which subsequently improved FAO and reduced hepatosteatosis. Conclusion: Our findings indicated that miR-378 possesses its own transcription machinery, which challenges the well-established dogma that miR-378 transcription is controlled by the promoter of Ppargc1ß. LXRα selectively activates transcription of miR-378 and inhibits expression of Ppargc1ß, which synergistically impairs FAO. In addition to lipogenesis, impaired FAO by miR-378 in part contributes to LXRα-induced hepatosteatosis.


Subject(s)
Fatty Liver/etiology , Liver X Receptors/metabolism , MicroRNAs/biosynthesis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Benzoates , Benzylamines , DEAD-box RNA Helicases/metabolism , Fatty Liver/metabolism , Gene Expression Regulation , Hep G2 Cells , Humans , Lipid Metabolism , Liver/metabolism , Liver X Receptors/agonists , Male , Mice, Inbred C57BL , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism
17.
J Hepatol ; 70(1): 87-96, 2019 01.
Article in English | MEDLINE | ID: mdl-30218679

ABSTRACT

BACKGROUND & AIMS: The progression of hepatosteatosis to non-alcoholic steatohepatitis (NASH) is a critical step in the pathogenesis of hepatocellular cancer. However, the underlying mechanism(s) for this progression is essentially unknown. This study was designed to determine the role of miR-378 in regulating NASH progression. METHODS: We used immunohistochemistry, luciferase assays and immunoblotting to study the role of miR-378 in modulating an inflammatory pathway. Wild-type mice kept on a high-fat diet (HFD) were injected with miR-378 inhibitors or a mini-circle expression system containing miR-378, to study loss and gain-of functions of miR-378. RESULTS: MiR-378 expression is increased in livers of dietary obese mice and patients with NASH. Further studies revealed that miR-378 directly targeted Prkag2 that encodes AMP-activated protein kinase γ 2 (AMPKγ2). AMPK signaling negatively regulates the NF-κB-TNFα inflammatory axis by increasing deacetylase activity of sirtuin 1. By targeting Prkag2, miR-378 reduced sirtuin 1 activity and facilitated an inflammatory pathway involving NF-κB-TNFα. In contrast, miR-378 knockdown induced expression of Prkag2, increased sirtuin 1 activity and blocked the NF-κB-TNFα axis. Additionally, knockdown of increased Prkag2 offset the inhibitory effects of miR-378 inhibitor on the NF-κB-TNFα axis, suggesting that AMPK signaling mediates the role of miR-378 in facilitating this inflammatory pathway. Liver-specific expression of miR-378 triggered the development of NASH and fibrosis by activating TNFα signaling. Ablation of TNFα in miR-378-treated mice impaired the ability of miR-378 to facilitate hepatic inflammation and fibrosis, suggesting that TNFα signaling is required for miR-378 to promote NASH. CONCLUSION: MiR-378 plays a key role in the development of hepatic inflammation and fibrosis by positively regulating the NF-κB-TNFα axis. MiR-378 is a potential therapeutic target for the treatment of NASH. LAY SUMMARY: The recent epidemic of obesity has been associated with a sharp rise in the incidence of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism(s) remains poorly described and effective therapeutic approaches against NAFLD are lacking. The results establish that microRNA-378 facilitates the development of hepatic inflammation and fibrosis and suggests the therapeutic potential of microRNA-378 inhibitor for the treatment of NAFLD.


Subject(s)
Gene Expression Regulation , Hepatitis/genetics , Liver Cirrhosis/genetics , MicroRNAs/genetics , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Biopsy , Disease Models, Animal , Disease Progression , Hepatitis/metabolism , Hepatitis/pathology , Humans , Immunoblotting , Immunohistochemistry , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/biosynthesis , Signal Transduction
18.
Metabolism ; 85: 183-191, 2018 08.
Article in English | MEDLINE | ID: mdl-29625129

ABSTRACT

BACKGROUNDS: The incidence of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing due to the prevalence of obesity. NAFLD is a major risk factor of hepatocellular carcinoma (HCC). Even with successful surgical removal, the presence of NAFLD is associated with an increased recurrence of HCC. Despite the extensive study of NAFLD, its underlying mechanism(s) remains essentially unknown and there are no FDA-approved drugs for its treatment. Alterations in microRNA (miR) expression have been observed in human fatty livers. However, regulatory mechanism(s) of miRNA biogenesis and their role in regulating the development of NAFLD is poorly described. METHODS: We used immunohistochemistry, luciferase assays and immunoblotting to study the regulatory mechanism of miR-378 biogenesis. Wild-type mice kept on a high fat diet (HFD) were injected with miR-378 inhibitors or a mini-circle expression system containing miR-378 to study loss and gain-of functions of miR-378. RESULTS: miR-378 was significantly increased in fatty livers of dietary obese mice and human hepatoma HepG2 cells with accumulated lipid. Further studies identified NRF1 (Nuclear receptor factor 1), a key regulator of fatty acid oxidation (FAO), as a direct target of miR-378. Overexpression of miR-378 impaired FAO and promoted lipid accumulation in murine hepatoma Hepa1-6 cells. In contrast, knockdown of miR-378 using its ASO (anti-sense oligo) improved FAO and reduced intracellular lipid content in Hepa1-6 cells. Liver-specific expression of miR-378 impaired FAO, which subsequently promoted the development of hepatosteatosis. Antagonizing miR-378 via injecting miR-378-ASO into HFD-treated mice led to increased expression of Nrf1, improved FAO and decreased hepatosteatosis. Additional knockdown of up-regulated Nrf1 offset the effects of miR-378-ASO, suggesting that Nrf1 mediated the inhibitory effect of miR-378-ASO on hepatosteatosis. Furthermore, Nrf1 was identified as a transcriptional repressor of miR-378. Ablation of Nrf1 using its shRNA in livers led to increased miR-378, which subsequently resulted in reduced FAO and elevated hepatic lipid content. CONCLUSIONS: These findings identified a negative feedback loop between miR-378 and Nrf1 that promotes the pathogenesis of hepatosteatosis, and suggests the use of miR-378 as a potential therapeutic target for NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Feedback, Physiological/physiology , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Nuclear Respiratory Factor 1/metabolism , Obesity/metabolism , Animals , Hep G2 Cells , Humans , Lipid Metabolism , Liver/metabolism , Mice , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Nuclear Respiratory Factor 1/genetics , Obesity/genetics
19.
Oncotarget ; 9(21): 15464-15479, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29643986

ABSTRACT

Glucose-regulated protein 78 (GRP78), an ER chaperone, is overexpressed in cancer cells. Solid tumor cells can secrete GRP78 that can promote tumor angiogenesis, differentiation of bone marrow-derived mesenchymal stem cells, tumor cell proliferation and polarization of tumor-associated macrophages. However, the mechanism by which GRP78 functions as a tumor promoter either by staying on the membrane to stimulate intracellular signals or directly entering into cytosolic remains unknown. Here, we reported that an endotoxin-free His-GRP78 protein was purified in vitro that simulates original secreted GRP78. Through analyzing GRP78 concentration in serum samples from 32 colon cancer patients, 40 nM His-GRP78 was selected as an optimized dose to treat cells. Biochemical analysis revealed that secreted GRP78 was able to enter into RAW264.7 and THP-1 cells directly rather than stay on the plasma membrane to transfer signals. Further studies showed that GRP78 internalization was endocytosis-dependent, and both phagocytosis and clathrin, caveolin-1 and micropinocytosis-mediated endocytosis pathways contributed to internalization of secreted GRP78 into cells. Mechanistically, Ajuba is able to interact with GRP78. Ablation of Ajuba suppressed the internalization of secreted GRP78 into cells, indicating that Ajuba was responsible for internalization of secreted GRP78 into RAW264.7. Furthermore, we observed that internalized GRP78 could entered into the mitochondrion and endoplasmic reticulum, which provided a suitable place and enough time for GRP78 to function in molecular and cellular processes. Together, these results reveal a novel mechanism by which secreted GRP78 internalizes into macrophages in the tumor microenvironment, which provides a potential target for drug development.

20.
Oncotarget ; 8(43): 74582-74594, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088809

ABSTRACT

The pro-inflammatory and anti-inflammatory maladjustment has been acknowledged as one of the chief causations of inflammatory diseases and even cancers. Previous studies showed that plant-derived polyphenolic compounds were the most potent anti-oxidant and anti-inflammatory agents among all natural compounds. The present study indicates that bound polyphenols of inner shell (BPIS) from foxtail millet bran can display anti-inflammatory effects in LPS-induced HT-29 cells and in nude mice. Mechanistically, BPIS restrained the level of various pro-inflammatory cytokines (IL-1ß, IL-6, IL-8), and enhanced the expression level of anti-inflammatory cytokine (IL-10) by blocking the nuclear factor-kappaB (NF-κB)-p65 nuclear translocation. Further, we found the elevated miR-149 expression by BPIS-induced ROS accumulation, directly targeted the Akt expression to block NF-κB nuclear translocation. Taken together, these novel findings provide new insights into the development of BPIS as an anti-inflammatory agent via the signaling cascade of ROS/miR-149/Akt/NF-κB axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...