Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Genomics ; 24(1): 784, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110895

ABSTRACT

BACKGROUND: Currently, the influence of microbiota on the occurrence, progression, and treatment of cancer is a topic of considerable research interest. Therefore, based on the theory of the gut-brain axis proved by previous studies, our objective was to uncover the causal relationship between glioblastoma and the gut microbiome using Mendelian randomization analysis. METHODS: We conducted a bidirectional Mendelian randomization study using summary statistics of gut microbiota derived from the MiBioGen consortium, the largest database of gut microbiota. Summary statistics for glioblastoma were obtained from IEU OpenGWAS project, which included 91 cases and 218,701 controls. We assessed the presence of heterogeneity and horizontal pleiotropy in the analyzed data. We primarily employed the inverse variance weighting method to investigate the causal relationship between gut microbiota and glioblastoma after excluding cases of horizontal pleiotropy. Four other analysis methods were employed as supplementary. Excluding abnormal results based on leave-one-out sensitivity analysis. Finally, reverse Mendelian randomization analysis was performed. RESULTS: Four genus-level taxa and one family-level taxa exhibited causal associations with glioblastoma. And these results of reverse Mendelian randomization analysis shown glioblastoma exhibited causal associations with three genus-level taxa and one family-level taxa. However, the Prevotella7(Forward, P=0.006, OR=0.34, 95%CI:0.158-0.732; Reverse, P=0.004, OR=0.972, 95%CI:0.953-0.991) shown the causal associations with glioblastoma in the bidirectional Mendelian randomization. CONCLUSIONS: In this bidirectional Mendelian randomization study, we identified five gut microbiota species with causal associations to glioblastoma. However, additional randomized controlled trials are required to clarify the impact of gut microbiota on glioblastoma and to reveal its precise mechanisms.


Subject(s)
Gastrointestinal Microbiome , Glioblastoma , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Glioblastoma/genetics , Mendelian Randomization Analysis , Databases, Factual , Genome-Wide Association Study
4.
J Neuroinflammation ; 20(1): 80, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944954

ABSTRACT

BACKGROUND: The unique intracranial tumor microenvironment (TME) contributes to the immunotherapy failure for glioblastoma (GBM), thus new functional protein targets are urgently needed. Alternative splicing is a widespread regulatory mechanism by which individual gene can express variant proteins with distinct functions. Moreover, proteins located in the cell plasma membrane facilitate targeted therapies. This study sought to obtain functional membrane protein isoforms from GBM TME. METHODS: With combined single-cell RNA-seq and bulk RNA-seq analyses, novel candidate membrane proteins generated by prognostic splicing events were screened within GBM TME. The short isoform of MS4A7 (MS4A7-s) was selected for evaluation by RT-PCR and western blotting in clinical specimens. Its clinical relevance was evaluated in a GBM patient cohort. The function of MS4A7-s was identified by in vitro and in vivo experiments. MS4A7-s overexpression introduced transcriptome changes were analyzed to explore the potential molecular mechanism. RESULTS: The main expression product, isoform MS4A7-s, generated by exon skipping, is an M2-specific plasma membrane protein playing a pro-oncogenic role in GBM TME. Higher expression of MS4A7-s correlates with poor prognosis in a GBM cohort. In vitro cell co-culture experiments, intracranial co-injection tumorigenesis assay, and RNA-seq suggest MS4A7-s promotes activation of glioma-associated macrophages' (GAMs) PI3K/AKT/GSK3ß pathway, leading to M2 polarization, and drives malignant progression of GBM. CONCLUSIONS: MS4A7-s, a novel splicing isoform of MS4A7 located on the surface of GAMs in GBM TME, is a predictor of patient outcome, which contributes to M2 polarization and the malignant phenotype of GBM. Targeting MS4A7-s may constitute a promising treatment for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Membrane Proteins , Humans , Brain Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Macrophages/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/genetics , Transcription Factors/metabolism , Tumor Microenvironment
5.
J Neurooncol ; 157(1): 15-26, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35187626

ABSTRACT

PURPOSE: Glioblastoma multiforme (GBM) is a primary brain tumor with devastating prognosis. Although the O6-methylguanine-DNA methyltransferase (MGMT) leads to inherent temozolomide (TMZ) resistance, approximately half of GBMs were sufficient to confer acquired TMZ resistance, which express low levels of MGMT. The purpose of this study was to investigate the underlying mechanisms of the acquired TMZ resistance in MGMT-deficient GBM. METHODS: The function of Down syndrome critical region protein 3 (DSCR3) on MGMT-deficient GBM was investigated in vitro and in an orthotopic brain tumor model in mice. Purification of plasma membrane proteins by membrane-cytoplasmic separation and subsequent label free-based quantitative proteomics were used to identified potential protein partners for DSCR3. Immunofluorescence was performed to show the reverse transport of solute carrier family 38 member 1 (SLC38A1) mediated by DSCR3. RESULTS: DSCR3 is upregulated in MGMT-deficient GBM cells during TMZ treatment. Both DSCR3 and SLC38A1 were highly expressed in recurrent GBM patients. Silencing DSCR3 or SLC38A1 expression can increase TMZ sensitivity in MGMT-deficient GBM cells. Combination of proteomics and in vitro experiments show that DSCR3 directly binds internalized SLC38A1 to mediate its sorting into recycling pathway, which maintains the abundance on plasma membrane and enhances uptake of glutamine in MGMT-deficient GBM cells. CONCLUSIONS: DSCR3 is a crucial regulator of acquired TMZ resistance in MGMT-deficient GBM. The DSCR3-dependent recycling of SLC38A1 maintains its abundance on plasma membrane, leading to tumor progression and acquired TMZ resistance in MGMT-deficient GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Amino Acid Transport System A , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Membrane/metabolism , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Drug Resistance, Neoplasm , Glioblastoma/pathology , Humans , Mice , Temozolomide/pharmacology , Temozolomide/therapeutic use
6.
Front Neuroanat ; 15: 679405, 2021.
Article in English | MEDLINE | ID: mdl-34163334

ABSTRACT

BACKGROUND: Intraventricular penetration is rare in glioblastoma (GBM). Whether the ependymal region including the ependyma and subventricular zone (SVZ) can prevent GBM invasion remains unclear. METHODS: Magnetic resonance imaging (MRI) and haematoxylin-eosin (HE) staining were performed to evaluate the size and anatomical locations of GBM. Binary logistic regression analysis was used to assess the correlation between tumor-ependyma contact, ventricle penetration and clinical characteristics. Cell migration and invasion were assessed via Transwell assays and an orthotopic transplantation model. RESULTS: Among 357 patients with GBM, the majority (66%) showed ependymal region contact, and 34 patients (10%) showed ventricle penetration of GBM. GBM cells were spread along the ependyma in the orthotopic transplantation model. The longest tumor diameter was an independent risk factor for GBM-ependymal region contact, as demonstrated by univariate (OR = 1.706, p < 0.0001) and multivariate logistic regression analyses (OR = 1.767, p < 0.0001), but was not associated with ventricle penetration. Cerebrospinal fluid (CSF) could significantly induce tumor cell migration (p < 0.0001), and GBM could grow in CSF. Compared with those from the cortex, cells from the ependymal region attenuated the invasion of C6 whether cocultured with C6 or mixed with Matrigel (p = 0.0054 and p = 0.0488). Immunofluorescence analysis shows a thin gap with GFAP expression delimiting the tumor and ependymal region. CONCLUSION: The ependymal region might restrict GBM cells from entering the ventricle via a non-mechanical force. Further studies in this area may reveal mechanisms that occur in GBM patients and may enable the design of new therapeutic strategies.

7.
J Biophotonics ; 13(2): e201900196, 2020 02.
Article in English | MEDLINE | ID: mdl-31743584

ABSTRACT

Heterogeneity is regarded as the major factor leading to the poor outcomes of glioblastoma (GBM) patients. However, conventional two-dimensional (2D) analysis methods, such as immunohistochemistry and immunofluorescence, have limited capacity to reveal GBM spatial heterogeneity. Thus, we sought to develop an effective analysis strategy to increase the understanding of GBM spatial heterogeneity. Here, 2D and three-dimensional (3D) analysis methods were compared for the examination of cell morphology, cell distribution and large intact structures, and both types of methods were employed to dissect GBM spatial heterogeneity. The results showed that 2D assays showed only cross-sections of specimens but provided a full view. To visualize intact GBM specimens in 3D without sectioning, the optical tissue clearing methods CUBIC and iDISCO+ were used to clear opaque specimens so that they would become more transparent, after which the specimens were imaged with a two-photon microscope. The 3D analysis methods showed specimens at a large spatial scale at cell-level resolution and had overwhelming advantages in comparison to the 2D methods. Furthermore, in 3D, heterogeneity in terms of cell stemness, the microvasculature, and immune cell infiltration within GBM was comprehensively observed and analysed. Overall, we propose that 2D and 3D analysis methods should be combined to provide much greater detail to increase the understanding of GBM spatial heterogeneity.


Subject(s)
Glioblastoma , Glioblastoma/diagnostic imaging , Humans , Microscopy , Microvessels , Photons
8.
Cell Biochem Funct ; 38(2): 185-194, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31833081

ABSTRACT

Glioblastoma (GBM) is the most malignant and aggressive glioma, which has a very poor prognosis. Temozolomide (TMZ) is still a first-line treatment, but resistance is inevitable even in MGMT-deficient glioblastoma cells. The aims of this study were to comprehend the effect of TMZ on nucleus and the underlying mechanism of acquired TMZ resistance in MGMT-deficient GBM. We show the changes of nuclear proteome in the MGMT-deficient GBM U87 cells treated with TMZ for 1 week. Label-free-based quantitative proteomics were used to investigate nuclear protein abundance change. Subsequently, gene ontology function annotation, KEGG pathway analysis, protein-protein interaction (PPI) network construction analysis of DAPs, and immunofluorescence were applied to validate the quality of proteomics. In total, 457 (455 gene products) significant DAPs were identified, of which 327 were up-regulated and 128 were down-regulated. Bioinformatics analysis uncovered RAD50, MRE11, UBR5, MSH2, MSH6, DDB1, DDB2, RPA1, RBX1, CUL4A, and CUL4B mainly enriched in DNA damage repair related pathway and constituted a protein-protein interaction network. Ribosomal proteins were down-regulated. Cells were in a stress-responsive state, while the entire metabolic level was lowered. SIGNIFICANCE OF THE STUDY: In U87 cell treated with TMZ for 1 week, which resulted in DNA damage, we found various proteins dysregulated in the nucleus. Some proteins related to the DNA damage repair pathway were up-regulated, and there was a strong interaction. We believe this is the potential clues of chemotherapy resistance in tumour cells. These proteins can be used as indicators of tumour resistance screening in the future.


Subject(s)
Brain Neoplasms/pathology , Cell Nucleus/drug effects , DNA Damage , Glioblastoma/pathology , Glioma/pathology , Temozolomide/pharmacology , Cell Line, Tumor , Cell Nucleus/pathology , Computational Biology , DNA Repair , Humans , Protein Binding , Protein Interaction Mapping , Proteome , Proteomics/methods , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...