Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 915: 170036, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242479

ABSTRACT

Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Polystyrenes/metabolism , Microplastics , alpha-Amylases , Nanoparticles/chemistry , Water Pollutants, Chemical/metabolism
2.
Environ Pollut ; 331(Pt 2): 121908, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37257807

ABSTRACT

Carbonyl compounds are critical components of volatile organic compounds, which significantly participate in the photochemical formation of atmospheric ozone and thus threaten human health. Here we measured 15 C1-C8 carbonyl compounds at an urban site in Linyi, a typically industrialised city in the North China Plain (NCP). Formaldehyde (3.89 ppbv), acetaldehyde (1.66 ppbv) and acetone (2.03 ppbv) were found to be the top three carbonyl compounds, accounting for 76.11% of the total concentration of carbonyl compounds. Anthropogenic secondary formation was recognised as the main source of the top five carbonyl compounds, which included formaldehyde, acetaldehyde, acetone, butyraldehyde and benzaldehyde, and accounted for 46-54% of all sources. Alkenes were the most important precursors of formaldehyde and acetaldehyde, suggesting that reducing the emission of alkenes from anthropogenic sources is an effective way to control carbonyl compound pollution in Linyi. Furthermore, the photolysis of carbonyl compounds played a significant role (68-75%) as sources of HO2• and RO2• and thus made a significant contribution (14.6%) to the photochemical formation of O3. This study highlights the importance of anthropogenic secondary formation as a source of carbonyl compounds and provides a scientific basis for O3 pollution control in carbonyl compound-enriched cities in the NCP.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Acetone/analysis , Photochemical Processes , Environmental Monitoring , China , Acetaldehyde/analysis , Ozone/analysis , Formaldehyde/analysis , Volatile Organic Compounds/analysis , Alkenes
3.
Chemosphere ; 313: 137473, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481174

ABSTRACT

Improving knowledge of the alga-bacterium interaction can promote the wastewater treatment. The untreated marine biopharmaceutical wastewater (containing native bacteria) was used directly for culturing microalgae. Unlike previous studies on specific bacteria in algal-bacterial co-culture systems, the effect of native bacteria in wastewater on microalgae growth was investigated in this study. The results showed that the coexistence of native bacteria greatly promoted the microalgae growth, ultimately producing biomass of 0.64 g/L and biomass productivity of 56.18 mg/L·d. Moreover, the lipid accumulation in the algae + bacteria group was 1.31 and 1.13 times higher than those of BG11 and pure algae, respectively, mainly attributed to the fact that bacteria provided a good environment for microalgae growth by using extracellular substances released from microalgae for their own growth, and providing micromolecules of organic matter and other required elements to microalgae. This study would lay the theoretical foundation for improving biopharmaceutical wastewater treatment.


Subject(s)
Biological Products , Microalgae , Scenedesmus , Water Purification , Wastewater , Bacteria , Lipids , Biomass , Biofuels
4.
Water Sci Technol ; 85(2): 617-632, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35100143

ABSTRACT

Sludge retention time (SRT) regulation is one of the essential management techniques for refined control of the main-sidestream treatment process under the low ammonia density. It is indispensable to understand the effect of SRTs changes on the Nitrifier kinetics to obtain the functional separation of the Nitrifier and the refined control of the nitrification process. In this study, Nitrifier was cultured with conditions of 35 ± 0.5 °C, pH 7.5 ± 0.2, DO 5.0 ± 0.5 mg-O/L, and SRTs were controlled for 40 d, 20 d, 10 d, and 5 d. The net growth rate (µm), decay rate (b), specific growth rate (µ), the yield of the Nitrifier (YA), temperature parameter (TA), and inhibition coefficient (KI) have been measured and extended with the SRT decreases. Instead, the half-saturation coefficient (KS) decreased. In addition, the limited value of pH inhibition occurs (pHUL), and the pH of keeping 5% maximum reaction rate (pHLL) was in a relatively stable state. The trade of kinetics may be induced by the change of species structure of Nitrifier. The Nitrosomonas proportion was increased, and the Nitrospira was contrary with the SRT decreasing. It is a match for the functional separation of Nitrifier when SRTs was 20 d at ambient temperature under the low ammonia density. The kinetics of ammonia-oxidizing organisms (AOO) and nitrite-oxidizing organisms (NOO) in Nitrifier under different SRT conditions should be measured respectively to the refined control of the partial nitrification process in future study.


Subject(s)
Ammonia , Sewage , Bioreactors , Kinetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...