Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(12): 7924-35, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25721038

ABSTRACT

The anisotropic shock sensitivity in a single crystal δ-cyclotetramethylene tetranitramine (δ-HMX) was investigated using the compress-shear reactive dynamics (CS-RD) computational protocol. Significant anisotropies in the thermo-mechanical and chemical responses were found by measuring the shear stress, energy, temperature, and chemical reactions during the dynamical process for the shock directions perpendicular to the (100), (010), (001), (110), (101), (011), and (111) planes. We predict that δ-HMX is sensitive for the shocks perpendicular to the (111), (011), (110), and (101) planes, which is intermediate to the (100) and (010) plane and is insensitive to the (001) plane. The internal energy accumulated within the duration of the surmounting shear stress barrier is a useful criterion to distinguish the sensitive directions from the less sensitive ones. The molecular origin of the anisotropic sensitivity is suggested to be the intermolecular steric arrangements across a slip plane induced by shock compression. The shear deformation induced by the shock along the sensitive direction encounters strong intermolecular contacts and has small intermolecular free space for geometry relaxation when the molecules collide, leading to high shear stress barriers and energy accumulation, which benefits the temperature increase and initial chemical bond breaking that trigger further reactions.

2.
J Chem Phys ; 125(7): 074308, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16942340

ABSTRACT

Based on Becke's three parameter functional [J. Chem. Phys. 98, 5648 (1993)] of density functional theory (DFT) with the correlation of Lee-Yang-Parr [Phys. Rev. B 37, 785 (1988)] (DFT/B3LYP), the natural bond orbital (NBO) analysis, the Bader's theory of atoms in molecule (AIM), our calculations indicate that as cluster size (n) increases, the n-dependent cooperative changes in the lengths of the N...H H bonds (HBs) and N-H bonds, the N-H stretching frequencies and intensities, and the n(N)-->sigma*(N-H) charge transfers are observed to be pervasive in the circular cis, trans-cyclotriazane clusters (n = 3-8), which is very different from the linear cis, trans-cyclotriazane clusters reported in previous work. According to the NBO and AIM theories, the cooperativity of the intermolecular n(N)-->sigma*(N-H) interaction leads to the n-dependent N...H contractions. In this way, the stronger N...H bond is formed, as reflected in the increase in their rho(r(cp)) values. This increased electron density is translated into the improved capacity to concentrate electrons at the HB bond critical point (BCP), i.e., a higher potential energy V(r(cp)). On the other hand, stronger repulsion is also activated to counteract the contraction, which is reflected in the increased G(r(cp)) value that gives the tendency of the system to dilute electrons at the HB BCP. In terms of the three-body symmetry-adapted perturbation theory (three-body SAPT), the induction nonadditivity accounts for up to 97% of the nonadditive energy in the circular trimer. It can believed that the marked cooperativity of the n(N)-->sigma*(N-H) interactions is of nonadditive induction in nature. The N...H formation and nature of cooperativity in the circular clusters differ from those in the linear clusters that have been reported previously. According to the SAPT(DFT) method which is a combination of SAPT with the asymptotically corrected DFT, the cis, trans-cyclotriazane systems should contain remarkable dispersion interactions. However, the short-range dispersion cannot be reproduced thoroughly by DFT/B3LYP. A quantum cluster equilibrium model illustrates the neglected dispersion energies and the nonadditive energies can affect markedly the properties of the liquid consisting of the circular clusters.

3.
J Phys Chem A ; 110(18): 6178-83, 2006 May 11.
Article in English | MEDLINE | ID: mdl-16671690

ABSTRACT

We investigate aspects of N-H...N hydrogen bonding in the linear trans-diazene clusters (n=2-10) such as the N...H and N-H lengths, n(N) --> sigma(N-H) interactions, N...H strengths, and frequencies of the N-H stretching vibrations utilizing the DFT/B3LYP theory, the natural bond orbital (NBO) method, and the theory of atoms in molecules (AIM). Our calculations indicate that the structure and energetics are qualitatively different from the conventional H-bonded systems, which usually exhibit distinct cooperative effects, as cluster size increases. First, a shortening rather than lengthening of the N-H bond is found and thus a blue rather than red shift is predicted. Second, for the title clusters, any sizable cooperative changes in the N-H and N...H lengths, n(N) --> sigma(N-H) charge transfers, N...H strengths, and frequencies of the N-H stretching vibrations for the linear H-bonded trans-diazene clusters do not exist. Because the n(N) --> sigma(N-H) interaction hardly exhibits cooperative effects, the capability of the linear trans-diazene cluster to localize electrons at the N...H bond critical point is almost independent of cluster size and thereby leads to the noncooperative changes in the N...H lengths and strengths and the N-H stretching frequencies. Third, the dispersion energy is sizable and important; more than 30% of short-range dispersion energy not being reproduced by the DFT leads to the underestimation of the interaction energies by DFT/B3LYP. The calculated nonadditive interaction energies show that, unlike the conventional H-boned systems, the trans-diazene clusters indeed exhibit very weak nonadditive interactions.


Subject(s)
Hydrogen/chemistry , Imides/chemistry , Nitrogen/chemistry , Quantum Theory , Algorithms , Hydrogen Bonding , Thermodynamics
4.
J Chem Phys ; 124(7): 74317, 2006 Feb 21.
Article in English | MEDLINE | ID: mdl-16497046

ABSTRACT

Our calculations based upon Becke's three-parameter functional of density-functional theory (DFT) with the correlation of Lee, Yang, and Parr (B3LYP), natural bond orbital, and atoms in molecule indicate that in drastic contrast to most H-bonded systems, the anticooperative and cooperative effects coexist in the linear H-bonded cis-,trans (c,t)-cyclotriazane clusters (n = 2-8). As cluster size increases, the properties along the H-bonded chains at trans-positions take on the unexpectedly anticooperative changes which are reflected in elongation of the N...H hydrogen bonds, frequency blueshift in the N-H stretching vibrations, decay in the n(N)-->sigma*(N-H) charge transfers, and weakening of strengths of the N...H bonds. And the cooperative changes in the corresponding properties for the cis- H-bonded chains are observed to be concurrent with the anticooperativities. The rise and fall in the n(N)-->sigma*(N-H) interactions cause increment and decrement in capacities of the clusters to concentrate electrons at the bond critical points of the N...H bonds, and thereby leading to the cooperative and the anticooperative changes especially in the N...H lengths and the N-H stretching frequencies. In terms of three-body symmetry-adapted perturbation theory (three-body SAPT), the first exchange nonadditivity plays a more important role in stabilizing trimer than the nonadditive induction. However, the dominance of the first exchange nonadditivity in three-body interaction unexpectedly triggers the anticooperative effect that counteracts the concurrent cooperative effect. According to the SAPT(DFT), which is a combination of SAPT with asymptotically corrected DFT, DFT/B3LYP is able to succeed in describing the electrostatic, exchange, and induction components, but fails to yield satisfactory interaction energies due to the fact that about 40% of short-range dispersion energy is neglected by the DFT, which is different from many H-bonded described well by the DFT. A quantum cluster equilibrium model illustrates that the c,t-cyclotriazane liquid phase exhibits a weak cooperative effect.

5.
J Phys Chem A ; 110(6): 2225-30, 2006 Feb 16.
Article in English | MEDLINE | ID: mdl-16466259

ABSTRACT

We employ DFT/B3LYP method to investigate linear open-chain clusters (n = 2-8) of the cis-triaziridine molecule that is a candidate molecule for high energy density materials (HEDM). Our calculations indicate that the pervasive phenomena of cooperative effects are observed in the clusters of n = 3-8, which are reflected in changes in lengths of N...H hydrogen bonds, stretching frequencies, and intensities of N-H bonds, dipole moments, and charge transfers as cluster size increases. The n(N) --> sigma*(N-H) interactions, i.e., the charge transfers from lone pairs (n(N)) of the N atoms into antibonds (sigma*) of the N-H bonds acting as H-donors, can be used to explain the observed cooperative phenomena. The approaches based upon natural bond orbital (NBO) method and theory of atoms in molecule (AIM) to evaluating N...H strengths are found to be equivalent. In the process of N...H bonding, cooperative nature of n(N) --> sigma*(N-H) interactions promotes formation of stronger N...H bonds as reflected in increases in the capacities of cis-triaziridine clusters to concentrate electrons at the bond critical points of N...H bonds. The calculated nonadditive energies also show that the cooperative effects due to n(N) --> sigma*(N-H) interactions indeed provide additional stabilities for the clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...