Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Omega ; 6(5): 3625-3636, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585743

ABSTRACT

Twin structures in gold nanomaterials are destined because they reduce the severe strains in the misfit region of nanostructures. Defect-free single crystalline plasmonic nanomaterials gain interests these days as the integration of plasmonic materials or plasmons into electronic devices and circuits becomes more common. In this study, without subtle experimental adjustments, such as pH or halide additives, several shapes of single crystalline gold nanoparticles (NPs) are prepared in the surfactant mixture of cetyltrimethylammonium bromide (CTAB) and Pluronic triblock copolymers. The synthesized NPs are primarily composed of {100} planes with small numbers of particles possessing a [110] zone axis. Pluronic copolymers with low number average molecular weights (M n), such as L-31 (M n ≈ 1100) and L-64 (M n ≈ 2900), prefer anisotropic nanorods with the aspect ratios of 4.3 and 3.0, respectively, while Pluronics with high M n values, such as F-68 (M n ≈ 8400) and F-108 (M n ≈ 14 600), favor more concentric and isotropic cube-like NPs. Extended micelles are believed to form in Pluronics with low M n values in which hydrophobic cores are merged with the increase of temperature, while the corona regions that are composed of long tails of PEO prevent the merge of hydrophobic cores, and the growth of the micelles is limited in Pluronic copolymers with high M n values. The catalytic degradation reactions of methyl orange are conducted, and rather than isotropic particles, gold nanorods exhibit better catalytic performances. More hydrophilic environment and the steric alignment of rigid aromatic structures of methyl orange along the nanorods are thought to contribute to the catalytic activities. Overall, highly confined geometries of the appropriately swollen micellar templates of Pluronics and CTAB, which is not so hydrophobic as for the formation of contracted deswollen templates and for the inhibition of the growth of NPs, and which is not so hydrophilic as for the formation of coarse templates and for the formation of isotropic spheres with varying sizes, are believed as the main factor for the formation of single crystalline gold NPs.

2.
ACS Omega ; 4(4): 7874-7883, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459874

ABSTRACT

The growth into anisotropic one or two dimensions is important in plasmonic gold nanomaterials because extinction occurs along multiple axes and sometimes the resonance extends to the near-infrared region. The surfactant mixture of cetyltrimethylammonium bromide (CTAB) and Pluronic triblock copolymers has been recently demonstrated to be efficient anisotropic soft templates for the growth of noble metal nanomaterials. Seed-mediated growth of two types of anisotropic Au nanoparticles is achieved in this study. One is one-dimensional prolate-shaped Au nanoparticles with the average aspect ratios of 2.29 and 2.59, and the other is two-dimensional gold nanoprisms with the average edge length of 50.4 nm. These anisotropic structures are believed to be produced by the tendency of Pluronic copolymers to be micellized anisotropically at the elevated temperatures and by the preference for being lamellar mesophases in the phase diagrams when the concentration is highest. When prepared in the surfactant mixture of CTAB and L-64 (17.9%), Au nanoparticles containing spherical particles (27.9 nm) as the major products show the best catalytic performances in the reduction reactions of 4-nitrophenol.

3.
RSC Adv ; 9(8): 4380-4389, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-35520198

ABSTRACT

One-dimensional (1D) metallogels are commonly observed in metal-coordinated complexes, but there are not many examples of soft crystalline solids which are generated by the self-assembly of metal-polymer complexation in a non-gel state. In a continued effort to obtain 1D materials by utilizing the tendency of Pluronic triblock copolymers to be micellized anisotropically at an elevated temperature, we investigate Ag(i)-mediated self-assembly of the surfactant mixture of Pluronic copolymers and cetyltrimethylammonium bromide (CTAB). At sufficiently high temperature, Pluronic copolymers are known to organize into many crystalline mesophases, such as body-centered-cubic, hexagonal, and lamellar phases. Four Pluronics of L-31, L-64, P-123, and F-108 were studied, and at the concentration of 17.9%, macroscale 1D rods with the aspect ratios ranging from 3.07 to 12.8 are obtained. At the concentration of 35.7%, anisotropic two dimensional (2D) planar plates are observed. These planar structures were believed to be generated from 2D lamellar mesophases, which is consistent with the general phase diagram of Pluronic copolymers that shows lamellar phase with the highest concentration. In the absence of ascorbic acid, rods and plates of larger size are produced. Rather than as a reductant, ascorbic acid is thought to play the roles of an agent to increase the hydrophilicity, and as a mediator to determine the dimension of rods and plates by hindering the long range self-assembly of alkyl chains. Dehydration by the addition of AgNO3, and the increase of hydrophobicity enable self-assembly of alkyl groups of CTAB and Pluronics and promote the formation of crystalline soft solids.

4.
Langmuir ; 34(14): 4271-4281, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29557660

ABSTRACT

Seedless synthesis of Pd nanorods and their self-assembly into the layered smectic ordering are described. Aqueous Pluronic triblock copolymers (14.3-35.7%) are used as a soft template along with cetyltrimethylammonium bromide for inducing one-dimensional growth of Pd nanorods. Pluronic triblock copolymers are probably the most used polymer surfactants, and they are composed of poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblocks. Neither pH adjustment nor AgNO3 and other additives, such as poly(vinyl pyrrolidone) and ethylene glycol, are required to obtain Pd nanorods. Sonochemical synthesis at 43 °C, followed by thermal annealing for 1 h at 65 °C produces Pd nanorods with the aspect ratio from 3.1 (17.9%, Pluronic L-64) to 6.7 (35.7%, Pluronic P-123). Two-dimensional self-assembly of the nanorods is observed, and both nematic ordering between the mesogens and smectic ordering between the layers is identified. Micellar hydrophobic PPO with hydrated PEO coronas are known to self-assemble into many crystalline orders, including cubic, hexagonal, lamellar, and inverse hexagonal mesophases, which extend into cylindrical micelles with increasing temperature. Relatively small size of Pluronic copolymers with regard to general polymers, but rather large size of their micelles and their tendency to organize into crystalline mesophases are thought to contribute to the anisotropic growth of Pd nanorods.

5.
Phys Chem Chem Phys ; 18(35): 24460-70, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27537252

ABSTRACT

Creation of structural complexity by simple experimental control will be an attractive approach for the preparation of nanomaterials, as a classical bottom-up method is supplemented by a more efficient and more direct artificial engineering method. In this study, structural manipulation of MCM-41 type mesoporous silica is investigated by generating and imbedding hard magnetic CoFe2O4 nanoparticles into mesoporous silica. Depending on the heating rate and target temperature, mesoporous silica undergoes a transformation in shape to form hollow silica, framed silica with interior voids, or melted silica with intact mesostructures. Magnetism is governed by the major CoFe2O4 phase, and it is affected by antiferromagnetic hematite (α-Fe2O3) and olivine-type cobalt silicate (Co2SiO4), as seen in its paramagnetic behavior at the annealing temperature of 430 °C. The early formation of Co2SiO4 than what is usually observed implies the effect of the partial substitution of Fe in the sites of Co. Under slow heating (2.5 °C min(-1)) mesostructures are preserved, but with significantly smaller mesopores (d100 = 1.5 nm). In addition, nonstoichiometric CoxFe1-xO with metal vacancies at 600 °C, and spinel Co3O4 at 700 °C accompany major CoFe2O4. The amorphous nature of silica matrix is thought to contribute significantly to these structurally diverse and rich phases, enabled by off-stoichiometry between Si and O, and accelerated by the diffusion of metal cations into SiO4 polyhedra at an elevated temperature.

6.
Phys Chem Chem Phys ; 17(28): 18825-33, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26123580

ABSTRACT

A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. A Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, a spin glass-like state is observed with the decrease in magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs are prepared by seeded growth. The structure of the core is cubic spinel (Fd3¯m), and the shell is composed of iron-manganese oxide (Mn(x)Fe(1-x)O) with a rock salt structure (Fm3¯m). Moiré fringes appear perpendicular to the 〈110〉 directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in the lattice spacings between MnFe2O4 and Mn(x)Fe(1-x)O. Exchange bias is observed in these MnFe2O4@Mn(x)Fe(1-x)O core-shell NPs with an enhanced coercivity, as well as the shift of hysteresis along the field direction.

7.
Nanoscale ; 5(10): 4321-9, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23563097

ABSTRACT

SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.


Subject(s)
Cholinesterase Inhibitors , Drug Carriers , Gold , Metal Nanoparticles/chemistry , Palladium , Phenanthrolines , Platinum , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Cytoplasm/chemistry , Cytoplasm/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Gold/chemistry , Gold/pharmacokinetics , Gold/pharmacology , HeLa Cells , Humans , Metal Nanoparticles/ultrastructure , Palladium/chemistry , Palladium/pharmacokinetics , Palladium/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/pharmacokinetics , Phenanthrolines/pharmacology , Platinum/chemistry , Platinum/pharmacokinetics , Platinum/pharmacology , Silver Nitrate/chemistry , Silver Nitrate/pharmacokinetics , Silver Nitrate/pharmacology , Spectrum Analysis, Raman
8.
Nanoscale ; 4(22): 7143-8, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23069807

ABSTRACT

Murine RAW 264.7 cells were exposed to spheroidal core-shell Fe(3)O(4)@Au nanoparticles (SCS-NPs, ca. 34 nm) or nanostars (NSTs, ca. 100 nm) in the presence of bovine serum albumin, with variable effects observed after macrophagocytosis. Uptake of SCS-NPs caused macrophages to adopt a rounded, amoeboid form, accompanied by an increase in surface detachment. In contrast, the uptake of multibranched NSTs did not induce gross changes in macrophage shape or adhesion, but correlated instead with cell enlargement and signatures of macrophage activation such as TNF-α and ROS. MTT assays indicate a low cytotoxic response to either SCS-NPs or NSTs despite differences in macrophage behavior. These observations show that differences in NP size and shape are sufficient to produce diverse responses in macrophages following uptake.


Subject(s)
Ferrosoferric Oxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Cell Line , Cell Survival/drug effects , Macrophages/drug effects , Metal Nanoparticles/toxicity , Mice , Particle Size , Phagocytosis/drug effects , Serum Albumin/chemistry , Serum Albumin/metabolism
9.
J Mater Chem ; 21(9): 2841-2844, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21660122

ABSTRACT

Plasmon-resonant nanostars (NSTs) provide excellent contrast enhancement for photoacoustic tomography. The high photoacoustic sensitivity of NSTs at near-infrared wavelengths enable their in vivo detection in rat sentinel lymph nodes and vessels, with direct application toward lymphangiography.

10.
ACS Nano ; 4(9): 5163-73, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20690598

ABSTRACT

Plasmon-resonant gold nanostars (NSTs) with magnetic cores were synthesized by a multistep sequence from superparamagnetic Fe3O4 nanoparticles (NPs) and evaluated as optical contrast agents under magnetomotive (MM) imaging conditions. Core-shell Fe3O4@Au NPs were prepared in nonpolar organic solvents with nanometer control over shell thickness and with good epitaxy to the Fe3O4 surface. Anisotropic growth was performed in micellar solutions of cetyltrimethylammonium bromide (CTAB) under mildly reducing conditions, resulting in NSTs with physical features similar to those produced from colloidal gold seeds. NSTs could be produced below 100 nm from tip to tip, but seed size had a significant impact on growth habit, with larger seed particles producing submicrometer-sized "morning stars". Both NSTs and aggregated core-shell NPs are responsive to in-plane magnetic field gradients and can provide enhanced near-infrared (NIR) contrast under MM conditions, but do so by different mechanisms. NSTs can modulate polarized NIR scattering with minimal translational motion, giving the appearance of a periodic but stationary "blinking", whereas core-shell NP aggregates require lateral displacement for signal modulation. The polarization-sensitive MM imaging modality offers the dual advantage of enhanced signal quality and reduced background signal and can be applied toward the detection of magnetomotive NSTs in heterogeneous biological samples, as illustrated by their detection inside of granular cells such as macrophages.


Subject(s)
Gold/chemistry , Magnetics , Magnetite Nanoparticles/chemistry , Molecular Imaging/methods , Animals , Cattle , Cell Line , Macrophages/metabolism , Mice , Microscopy, Electron, Transmission , Optical Phenomena , Protein Transport , Serum Albumin, Bovine/metabolism
11.
J Am Chem Soc ; 131(28): 9728-34, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19435348

ABSTRACT

Plasmon-resonant nanoparticles with optical scattering in the near-infrared (NIR) are valuable contrast agents for biophotonic imaging and may be detected at the single-particle limit against a dark background, but their contrast is often limited in environments with high noise. Here we consider gyromagnetic imaging as a dynamic mode of optical contrast, using gold nanostars with superparamagnetic cores. The nanostars exhibit polarization-sensitive NIR scattering and can produce a frequency-modulated signal in response to a rotating magnetic field gradient. This periodic "twinkling" can be converted into Fourier-domain images with a dramatic reduction in background. We demonstrate gyromagnetic imaging of nanostars inside of tumor cells, using broadband excitation: while their time-domain signals are obscured by incoherent scattering, their Fourier-domain signals can be clearly resolved in less than a second. The gyromagnetically active nanostars do not cause a loss in viability, and can even have a mild stimulatory effect on cell growth.


Subject(s)
Gold/chemistry , Magnetics , Metal Nanoparticles/chemistry , Optical Phenomena , Biological Transport , Gold/metabolism , Humans , KB Cells , Luminescence , Motion , Rotation , Time Factors , Tomography, Optical Coherence
12.
Langmuir ; 23(18): 9472-80, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17655262

ABSTRACT

This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.


Subject(s)
Aluminum Compounds/chemistry , Aluminum Oxide/chemistry , Arsenicals/chemistry , Gallium/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polymers/chemistry , Elastomers , Iron/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Molecular Structure , Nickel/chemistry , Platinum/chemistry , Siloxanes/chemistry , Spectrophotometry , Spectrum Analysis , Surface Properties , Water/chemistry
13.
Chem Commun (Camb) ; (12): 1292-4, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16538251

ABSTRACT

A new single source approach was developed to synthesize face-centered tetragonal (fct) FePt nanoparticles using bimetallic compound (CO)3Fe(mu-dppm)(mu-CO)PtCl2, which has been characterized by single crystal X-ray diffraction and was used as the precursor to ensure the accurate stoichiometry of the final FePt product; the ability of the molecular complex to act as a single source precursor for the formation of fct FePt nanocrystals with an average diameter of 3.2 nm has been demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...