Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Oncogene ; 43(26): 2000-2014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744953

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Ubiquitin Thiolesterase , Humans , Ferroptosis/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Mice , Cell Line, Tumor , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Gene Expression Regulation, Neoplastic , Ferritins/metabolism , Ferritins/genetics , Mice, Nude , Autophagy/genetics , Hypoxia/metabolism , Cell Proliferation/genetics , Male
2.
Sci China Life Sci ; 66(4): 783-799, 2023 04.
Article in English | MEDLINE | ID: mdl-36334219

ABSTRACT

Cardiac fibrosis is one of the crucial pathological factors in the heart, and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure. However, the exact molecular mechanism of cardiac fibrosis remains unclear. In the present study, we show that a novel lncRNA that we named cardiac fibrosis-associated regulator (CFAR) is a profibrotic factor in the heart. CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts, thereby ameliorating cardiac fibrosis. Moreover, CFAR acted as a ceRNA sponge for miR-449a-5p and derepressed the expression of LOXL3, which we experimentally established as a target gene of miR-449a-5p. In contrast to CFAR, miR-449a-5p was found to be significantly downregulated in cardiac fibrosis, and artificial knockdown of miR-449a-5p exacerbated fibrogenesis, whereas overexpression of miR-449a-5p impeded fibrogenesis. Furthermore, we found that LOXL3 mimicked the fibrotic factor TGF-ß1 to promote cardiac fibrosis by activating mTOR. Collectively, our study established CFAR as a new profibrotic factor acting through a novel miR-449a-5p/LOXL3/mTOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Fibrosis , Fibroblasts/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Amino Acid Oxidoreductases/metabolism
3.
Sheng Li Xue Bao ; 74(5): 763-772, 2022 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-36319099

ABSTRACT

The present study was aimed to investigate the effects of circRNA-0028171 on the apoptosis of vascular endothelial cells induced by arsenic trioxide (As2O3). Human umbilical vein endothelial cells (HUVECs) were treated with 0-15 µmol/L As2O3 for 24 h. Then, cellular viability was measured by MTT assay. The expression levels of circRNA-0028171, Bcl-2 and Bax mRNA were detected by real-time quantitative PCR. Bcl-2/Bax protein ratio was detected by Western blot. Whether circRNA-0028171 was involved in the regulation of HUVECs by As2O3 was investigated by transfection with overexpression plasmid of circRNA-0028171 and siRNA. The results showed that compared with the control group, As2O3 group showed decreased cellular viability, reduced Bcl-2/Bax mRNA and protein ratios, and significantly lower expression of circRNA-0028171. Overexpression of circRNA-0028171 inhibited apoptosis of HUVECs induced by As2O3. Knockdown of circRNA-0028171 by siRNA promoted As2O3-induced apoptosis in HUVECs. These results suggest that circRNA-0028171 is involved in the vascular endothelial cell apoptosis induced by As2O3.


Subject(s)
Apoptosis , RNA, Circular , Humans , Arsenic Trioxide/metabolism , Arsenic Trioxide/pharmacology , bcl-2-Associated X Protein/metabolism , RNA, Small Interfering/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Messenger/metabolism
4.
Comput Methods Programs Biomed ; 226: 107102, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108571

ABSTRACT

OBJECTIVE: To scrutinize the impact of overexpression and interference of NFE2L3 on radiosensitivity of esophageal squamous cell carcinoma cells (ESCC) and its downstream mechanism and to assess whether NFE2L3 expression alters in vivo radiosensitivity of ESCC by developing a subcutaneous tumor model in mice. METHODS: Through RNA-Seq, we compared the differentially expressed genes between the ECA-109R cell line and its parent ECA-109 cell line. The differentially expressed genes were selected and verified by qRT-PCR. Transfection of ESCC cell lines with NFE2L3 inhibitor or mimic lentivirus constructs was done to study the activity of NFE2L3. To assess the effect of NFE2L3 on cellular growth and proliferation, clonogenic survival assay, EdU incorporation assay, and CCK-8 assay were done after irradiation. To probe how many irradiated DNA double-strand breaks were produced, the corresponding intensity of γ-H2AX foci were detected by immunofluorescence. Apoptotic cells were assayed by flow cytometry assay after irradiation; To investigate the downstream genes of NFE2L3, we knocked NFE2L3, and RNA-Seq was used to find out the downstream genes. qRT-PCR and western blot ensued to score associated protein profiles. The in vivo ESCC cell radiosensitivity was scrutinized by nude mouse xenograft models. RESULTS: The differential genes between ECA-109R cells and its parent ECA-109 cells were compared by qRT-PCR to unveil a significant increase in NFE2L3 expression. Functional analysis indicated that NFE2L3 increased radioresistance in ESCC cells. Then, through high-throughput sequencing and bioinformatics analysis, IL-6 was found to be a hub gene that played a role downstream of NFE2L3 and was verified by qRT-PCR, western blot, and double luciferase reporter gene experiment. NFE2L3 could regulate ESCC cell radiosensitivity via the IL-6-STAT3 signaling pathway, and downregulation of IL-6 expression could reverse the effects of highly expressed NFE2L3. In vivo tumor xenograft experiments confirmed that NFE2L3 affects the sensitivity to radiation therapy. CONCLUSION: NFE2L3 can affect the radiosensitivity of ESCC cells through IL-6 transcription and IL-6/STAT3 signaling pathway. This makes NFE2L3 a putative target to regulate ESCC cell radiosensitivity.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Mice , Animals , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/metabolism , Interleukin-6/pharmacology , Cell Line, Tumor , Apoptosis/radiation effects , Cell Proliferation , Mice, Nude , Basic-Leucine Zipper Transcription Factors/pharmacology
5.
J Exp Clin Cancer Res ; 41(1): 259, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36008860

ABSTRACT

BACKGROUND: Radiation-induced bystander effect (RIBE) can promote tumor metastasis contributing to the failure of radiotherapy for esophageal squamous cell carcinoma (ESCC). Aberrant expression of DJ-1 has been identified in ESCC; however, the relationship between DJ-1 and RIBE in ESCC remains unknown. METHODS: We detected DJ-1 in the serum and cell supernatants by enzyme-linked immunosorbent assay (ELISA) and evaluated tumor metastasis by phenotypic experiments in vivo and in vitro. RNA-seq, mass spectrometry, western blot (WB), immunoprecipitation (IP), and dual-luciferase reporter assays were performed to explore the underlying mechanisms. RESULTS: DJ-1 was highly expressed in the serum of patients with ESCC receiving radiotherapy and was significantly overexpressed in the medium of ESCC cells receiving irradiation. DJ-1 promoted tumor metastasis via the TGF-ß1 pathway. Mechanistic studies revealed that DJ-1 bound to HSC70 to promote Smad3 phosphorylation and nuclear aggregation in a protein-interaction manner, which activated the transcription of Thrombospondin-1 (TSP1). Subsequently, the activation of TGF-ß1 by TSP1 re-promoted Smad3 phosphorylation and nuclear aggregation, constituting a positive feedback loop to strengthen the metastasis of ESCC cells, which was effectively blocked by LY2109761 and LSKL. Moreover, higher levels of serum DJ-1 in patients with ESCC were related to a poorer prognosis of radiotherapy. CONCLUSIONS: Irradiation can induce ESCC cells secreting DJ-1. Secreted DJ-1 enters bystander cells to initiate activation of the TGF-ß1 pathway via the DJ-1/HSC70/Smad3 signaling axis. The TSP1/TGF-ß1/Smad3 positive feedback pathway constitutes the core pathway that promotes ESCC metastasis. DJ-1 is a useful biomarker for predicting the efficacy of radiotherapy and a potential therapeutic target for reversing RIBE in ESCC. Schematic diagram showing the underlying mechanism that irradiation-induced secretion of DJ-1 accelerates the metastasis of bystander ESCC cells.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Feedback , Gene Expression Regulation, Neoplastic , Humans , Transforming Growth Factor beta1/metabolism
6.
Cancers (Basel) ; 14(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884444

ABSTRACT

Redox plays a central part in the pathogeneses and development of tumors. We comprehensively determined the expression patterns of redox-related genes (RRGs) in endometrial carcinoma (EC) cohorts from public databases and identified four different RRG-related clusters. The prognosis and the characteristics of TME cell infiltration of RRGcluster C patients were worse than those of other RRG clusters. When it comes to the gene cluster, there were great differences in clinicopathology traits and immunocyte infiltration. The RRG score was calculated by Cox analyses, and an RRG-based signature was developed. The risk score performed well in the EC cohort. Samples were separated into two risk subgroups with the standard of the value of the median risk score. Low-risk patients had a better prognosis and higher immunogenicity. In addition, RRG score was closely associated with immunophenoscore, microsatellite instability, tumor mutation burden, tumor stem cell index, copy number variation and chemotherapy sensitivity. The nomogram accurately predicted the prognosis of patients, and our model showed better performance than other published models. In conclusion, we built a prognostic model of RRGs which can help to evaluate clinical outcomes and guide more effective treatment.

7.
Front Oncol ; 12: 923641, 2022.
Article in English | MEDLINE | ID: mdl-35719911

ABSTRACT

Backgrounds: Uterine corpus endometrial carcinoma (UCEC) is one of the greatest threats on the female reproductive system. The aim of this study is to explore the inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and response of UCEC patients to immunotherapy and chemotherapy. Methods: Consensus clustering analysis was employed to determine inflammation-related subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate analyses. Differential abundance of immune cell infiltration, expression levels of immunomodulators, the status of tumor mutation burden (TMB), the response to immune checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the expression patterns of model IRLs in clinical specimens. Results: All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had significant differences in prognosis and immune status. Five hub IRLs were selected to develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical outcome of UCEC patients. Biological processes related to tumor and immune response were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB signaling, TGF-ß signaling, and Wnt signaling) were remarkably activated in high-risk group scores. In addition, the high-risk group had a higher infiltration level of M2 macrophages and lower TMB value, suggesting patients with high risk were prone to a immunosuppressive status. Furthermore, we determined several potential molecular drugs for UCEC. Conclusion: We successfully identified a novel molecular subtype and inflammation-related prognostic model for UCEC. Our constructed risk signature can be employed to assess the survival of UCEC patients and offer a valuable reference for clinical treatment regimens.

8.
Cancer Manag Res ; 13: 7527-7541, 2021.
Article in English | MEDLINE | ID: mdl-34629900

ABSTRACT

INTRODUCTION: Osteosarcoma (OSA) is characterized by its relatively high morbidity in children and adolescents. Patients usually have advanced disease at the time of diagnosis, resulting in poor outcomes. This study focused on building a circular RNA-based ceRNA network to develop a reliable model for OSA risk prediction. METHODS: We used the Gene Expression Omnibus (GEO) datasets to explore the expression patterns of circRNA, miRNA, and mRNA in OSA. The prognostic value of circRNA host genes was assessed with data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database using Kaplan-Meier survival analysis. We established a circRNA-related ceRNA network and annotated its biological functions. Next, we developed a prognostic risk signature based on mRNAs extracted from the ceRNA network. We also developed a prognostic model and constructed a nomogram to enhance the prediction of OSA prognosis. RESULTS: We identified 166 DEcircRNAs, 233 DEmiRNAs, and 1317 DEmRNAs and used them to create a circRNA-related ceRNA network. We then established a prognostic risk model consisting of four genes (MLLT11, TNFRSF11B, SLC7A7, and PARVA). Moreover, we found that inhibition of MLLT11 and SLC7A7 blocked OSA cell proliferation and migration in in vitro experiments. CONCLUSION: Our study identifies crucial prognostic genes and provides a circRNA-related ceRNA network for OSA, which will contribute to the elucidation of the molecular mechanisms underlying the oncogenesis and development of OSA.

9.
J Oncol ; 2021: 3586589, 2021.
Article in English | MEDLINE | ID: mdl-34712325

ABSTRACT

BACKGROUND: Glioma is the most common central nervous system (CNS) cancer with a short survival period and a poor prognosis. The S100 family gene, comprising 25 members, relates to diverse biological processes of human malignancies. Nonetheless, the significance of S100 genes in predicting the prognosis of glioma remains largely unclear. We aimed to build an S100 family-based signature for glioma prognosis. METHODS: We downloaded 665 and 313 glioma patients, respectively, from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database with RNAseq data and clinical information. This study established a prognostic signature based on the S100 family genes through multivariate COX and LASSO regression. The Kaplan-Meier curve was plotted to compare overall survival (OS) among groups, whereas Receiver Operating Characteristic (ROC) analysis was performed to evaluate model accuracy. A representative gene S100B was further verified by in vitro experiments. RESULTS: An S100 family-based signature comprising 5 genes was constructed to predict the glioma that stratified TCGA-derived cases as a low- or high-risk group, whereas the significance of prognosis was verified based on CGGA-derived cases. Kaplan-Meier analysis revealed that the high-risk group was associated with the dismal prognosis. Furthermore, the S100 family-based signature was proved to be closely related to immune microenvironment. In vitro analysis showed S100B gene in the signature promoted glioblastoma (GBM) cell proliferation and migration. CONCLUSIONS: We constructed and verified a novel S100 family-based signature associated with tumor immune microenvironment (TIME), which may shed novel light on the glioma diagnosis and treatment.

10.
J Oncol ; 2021: 4338838, 2021.
Article in English | MEDLINE | ID: mdl-34594376

ABSTRACT

PURPOSE: Radiotherapy resistance is now recognized as the major obstacle to the effective therapeutic management of non-small-cell lung cancer (NSCLC). As a single biomarker has limited effect in stratifying NSCLC patients, this research aimed to identify long non-coding RNAs (lncRNAs) correlated with radiotherapy response to ameliorate forecast of NSCLC prognosis. METHODS: In a cohort of NSCLC patients with radiotherapy history (n = 96) from TCGA, genetic data of lncRNA expression profiling were performed. To identify radioresponse-related lncRNA sets which dysregulated significantly between radiosensitive (RS) and radioresistant (RR) groups, differential expression analysis was carried out. Cox relative regression was implemented to set up a radioresponse-related risk model. Moreover, we adopted survival analysis to measure the predictive potentiality of the prognosis model. RESULTS: Four radioresponse-related lncRNAs (CASC19, LINC01977, LINC02471, and MAGI2-AS3) were screened to create a prognostic signature. Then, we described a lncRNA signature-based regulatory network and explored the correlation of the immune microenvironment and the signature. Additionally, in vitro assays uncovered inhibition of LINC01977 weakened radioresistance of NSCLC cells. CONCLUSION: We provided a novel radioresponse-related lncRNAs signature with excellent clinical potency for an effective prognostic forecast of patients.

11.
Bioengineered ; 12(1): 5932-5949, 2021 12.
Article in English | MEDLINE | ID: mdl-34488540

ABSTRACT

Lung adenocarcinoma (LUAD) has been the major cause of tumor-associated mortality in recent years and has a poor prognosis. Pyroptosis is regulated via the activation of inflammasomes and participates in tumorigenesis. However, the effects of pyroptosis-related lncRNAs (PRlncRNAs) on LUAD have not yet been completely elucidated. Therefore, we attempted to systematically explore patterns of cell pyroptosis to establish a novel signature for predicting LUAD survival. Based on TCGA database, we set up a prognostic model by incorporating PRlncRNAs with differential expression using Cox regression and LASSO regression. Kaplan-Meier analysis was conducted to compare the survival of LUAD patients. We further simplified the risk model and created a nomogram to enhance the prediction of LUAD prognosis. Altogether, 84 PRlncRNAs with differential expression were discovered. Subsequently, a new risk model was constructed based on five PRlncRNAs, GSEC, FAM83A-AS1, AL606489.1, AL034397.3 and AC010980.2. The proposed signature exhibited good performance in prognostic prediction and was related to immunocyte infiltration. The nomogram exactly forecasted the overall survival of patients and had excellent clinical utility. In the present study, the five-lncRNA prognostic risk signature and nomogram are trustworthy and effective indicators for predicting the prognosis of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Pyroptosis/genetics , RNA, Long Noncoding/genetics , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/mortality , Aged , Cell Line, Tumor , Computational Biology , Databases, Genetic , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Middle Aged , Prognosis , RNA, Long Noncoding/metabolism , Transcriptome/genetics
12.
Front Mol Biosci ; 8: 675193, 2021.
Article in English | MEDLINE | ID: mdl-34291083

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) accounts for the main esophageal cancer (ESCA) type, which is also associated with the greatest malignant grade and low survival rates worldwide. Ferroptosis is recently discovered as a kind of programmed cell death, which is indicated in various reports to be involved in the regulation of tumor biological behaviors. This work focused on the comprehensive evaluation of the association between ferroptosis-related gene (FRG) expression profiles and prognosis in ESCC patients based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). ALOX12, ALOX12B, ANGPTL7, DRD4, MAPK9, SLC38A1, and ZNF419 were selected to develop a novel ferroptosis-related gene signature for GEO and TCGA cohorts. The prognostic risk model exactly classified patients who had diverse survival outcomes. In addition, this study identified the ferroptosis-related signature as a factor to independently predict the risk of ESCC. Thereafter, we also constructed the prognosis nomogram by incorporating clinical factors and risk score, and the calibration plots illustrated good prognostic performance. Moreover, the association of the risk score with immune checkpoints was observed. Collectively, the proposed ferroptosis-related gene signature in our study is effective and has a potential clinical application to predict the prognosis of ESCC.

13.
Front Oncol ; 11: 666826, 2021.
Article in English | MEDLINE | ID: mdl-34150632

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a leading malignancy and has a poor prognosis over the decades. LUAD is characterized by dysregulation of cell cycle. Immunotherapy has emerged as an ideal option for treating LUAD. Nevertheless, optimal biomarkers to predict outcomes of immunotherapy is still ill-defined and little is known about the interaction of cell cycle-related genes (CCRGs) and immunity-related genes (IRGs). METHODS: We downloaded gene expression and clinical data from TCGA and GEO database. LASSO regression and Cox regression were used to construct a differentially expressed CCRGs and IRGs signature. We used Kaplan-Meier analysis to compare survival of LUAD patients. We constructed a nomogram to predict the survival and calibration curves were used to evaluate the accuracy. RESULTS: A total of 61 differentially expressed CCRGs and IRGs were screened out. We constructed a new risk model based on 8 genes, including ACVR1B, BIRC5, NR2E1, INSR, TGFA, BMP7, CD28, NUDT6. Subgroup analysis revealed the risk model accurately predicted the overall survival in LUAD patients with different clinical features and was correlated with immune cells infiltration. A nomogram based on the risk model exhibited excellent performance in survival prediction of LUAD. CONCLUSIONS: The 8 gene survival signature and nomogram in our study are effective and have potential clinical application to predict prognosis of LUAD.

14.
Front Pharmacol ; 12: 659735, 2021.
Article in English | MEDLINE | ID: mdl-34040525

ABSTRACT

Aim: The FMS-related tyrosine kinase 3 ligand (FL) has an important role in regulating FMS-related tyrosine kinase 3 (Flt-3) activity. Serum FL levels are markedly increased among patients with hematopoietic disease. However, its role in radiation treatment remains unclear. In this study, we investigated the effects of FL on radiotherapy for esophageal squamous cell carcinoma (ESCC). Methods: KYSE150 and KYSE450 cells were stimulated with FL (200 ng/ml). mRNA expression was analyzed using qRT-PCR. Cell viability was checked using CCK-8 assay kits. Proliferation was determined using the EdU assay. Radiosensitivity was detected through a colony-forming assay. Flow cytometry was used to evaluate cell apoptosis. The number of γH2AX foci was verified using an immunofluorescence assay. The change in relative proteins was determined by western blot analysis. The growth of transplanted tumors was demonstrated in nude mice. Results: Our results showed that FL increased the radiation resistance of ESCC cells by promoting clone formation, increasing EdU incorporation, enhancing DNA damage repair, and inhibiting apoptosis. Moreover, the Flt-3 receptor expression significantly increased in ESCC cells after radiation, which may have been an important factor in their radioresistance. Conclusion: Our results suggest that FL increases the radioresistance of esophageal cancer cells and that FL-Flt-3 could be a potential target for enhancing radiosensitivity in ESCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...