Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(6): e202314355, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37914669

ABSTRACT

Cheap, stable and easy-to-handle Werner ammine salts have been known for more than a century; but they have been rarely used in organic synthesis. Herein, we report that the Werner hexammine complex [Ni(NH3 )6 ]Cl2 can be used as both a nitrogen and a catalytic nickel source that allow for the efficient amination of aryl chlorides in the presence of a catalytic amount of bipyridine ligand under the irradiation of 390-395 nm light without the need of any additional catalysts. More than 80 aryl chlorides, including more than 20 drug molecules, were aminated, demonstrating the practicality and generality of this method in synthetic chemistry. A slow NH3 release mechanism is in operation, obviating the problem of catalyst poisoning. Still interestingly, we show that the Werner salt can be easily recovered and reused, solving the problem of difficult recovery of transition metal nickel catalysts. The protocol thus provides an efficient new strategy for the synthesis of primary aryl amines.

2.
Chemistry ; 29(37): e202300458, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37066524

ABSTRACT

This paper reports a photochemical C-N coupling of abundant, but less reactive aryl chlorides, with structurally diverse primary and secondary amides by Ni-mediated without an external photocatalyst. Under the irradiation of light (390-395 nm) with a soluble organic amine as the base, the reaction allows for the successful transformation of (hetero)aryl chlorides to a wide range of N-aryl amides. More than 60 examples are shown, demonstrating the feasibility and applicability of this protocol in organic synthesis. Mechanic studies indicate that this amidation proceeds via a Ni(I)-Ni(III) catalytic cycle.

3.
Front Immunol ; 13: 828911, 2022.
Article in English | MEDLINE | ID: mdl-35359964

ABSTRACT

Gasdermin (GSDM) family proteins were recently identified as the executioner of pyroptosis. The mechanism of pyroptosis mediated by gasdermin D (GSDMD) (a member of GSDM family) in humans and mice is well understood. In pyroptosis, mouse and human GSDMDs are cleaved by activated proinflammatory caspases (caspase-1, 4, 5, or 11) to produce anamino-terminal domain (GSDMD-NT) and a carboxyl-terminal domain (GSDMD-CT). The GSDMD-NT drives cell membrane rupture, which leads to the pyroptotic death of the cells. The expression of porcine GSDMD (pGSDMD) has recently been determined, but the activation and regulation mechanism of pGSDMD and its ability to mediate pyroptosis are largely unknown. In the present study, the activation of porcine caspase-1 (pcaspase-1) and cleavage of pGSDMD occurred in the duodenum and jejunum of a piglet challenged with enterotoxigenic Escherichia coli were first determined. Then the capability of pcaspase-1 to cleave pGSDMD was determined in a cell-free system and in human embryonic kidney cells. The pGSDMD cleavage by pcaspase-1 occurred after the pGSDMD molecule's 276Phenylalanine-Glutamine-Serine-Aspartic acid279 motif. The pGSDMD-NT generated from the pGSDMD cleavage by pcaspase-1 showed the ability to drive cell membrane rupture in eukaryotic cells. When expressed in E. coli competent cells, pGSDMD-NT showed bactericidal activity. These results suggest that pGSDMD is a substate of pcaspase-1 and an executioner of pyroptosis. Our work sheds light on pGSDMD's activation mechanisms and functions.


Subject(s)
Escherichia coli , Pyroptosis , Animals , Caspase 1/metabolism , Caspases/metabolism , Escherichia coli/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Phosphate-Binding Proteins , Swine
4.
Protein Expr Purif ; 187: 105945, 2021 11.
Article in English | MEDLINE | ID: mdl-34302969

ABSTRACT

Gasdermin-D (GSDMD) is a member of the gasdermin (Gsdm) protein family, and its cleavage by inflammatory cysteine proteases (caspases, CASPs) is a critical event in cell pyroptosis. The role and functions of GSDMD on mice and humans are widely studied, but its expression, structure, and function in other species are less known. In the present work, rabbit anti-porcine GSDMD (pGSDMD) polyclonal antibody was prepared by immunizing New Zealand white rabbits with prokaryotic expressed recombinant pGSDMD (rpGSDMD). The prepared polyclonal antibody showed good specificity in Western blot and indirect immunofluorescence (IIF) assays. Western blot results showed that the polyclonal antibody could recognize overexpressed pGSDMD in human embryonic kidney cells (HEK293T) and endogenously expressed pGSDMD in cultured intestinal porcine enterocytes (IPEC-J2) and porcine kidney cells (PK-15). Western blot also revealed that pGSDMD was expressed in the heart, liver, lung, kidney, gallbladder, and jejunum of pigs. HEK293T cells overexpressing GSDMD showed green fluorescence in the IIF assay only after being treated with 0.3% Triton-X 100, which indicated that the full-length pGSDMD was located in the plasma but not on the cell membrane. This work provides a useful tool and basic information for further studies on pGSDMD.


Subject(s)
Antibodies/immunology , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Animals , Antibodies/chemistry , Female , Gallbladder , HEK293 Cells , Heart , Humans , Jejunum , Kidney , Liver , Lung , Phosphate-Binding Proteins/immunology , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , Rabbits , Recombinant Proteins/immunology , Swine
5.
PLoS One ; 11(4): e0153833, 2016.
Article in English | MEDLINE | ID: mdl-27092945

ABSTRACT

Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.


Subject(s)
Chlorella/classification , Chlorella/genetics , Microalgae/classification , Microalgae/genetics , DNA Barcoding, Taxonomic/methods , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...