Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.400
Filter
1.
Heliyon ; 10(9): e30323, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711632

ABSTRACT

Background: Prolonged circulatory arrest time is an independent risk factor for postoperative adverse events of type A aortic dissection (TAAD) surgery. Further reduction of the circulatory arrest time is essential to improve surgical outcomes. This study aimed to evaluate the safety and effectiveness of the novel Sutureless Integrated Stented (SIS) graft prosthesis in an animal experiment. Materials and methods: Straight type of the SIS graft prosthesis was implanted into the descending aorta of 10 adult male sheep, and the use of the device was scored on a scale of 1-10. Aortic digital subtraction angiography (DSA) was performed at 4, 14, and 26 weeks to investigate the prostheses. After 26 weeks, the animals were sacrificed for histological analysis. Results: The immediate success rate of the surgery was 100 %, and the overall mean score of the use of the device was 9.65 ± 0.99. Three animals died from non-device-related causes during follow-up. Aortic DSA showed filling defects in 5 animals. Histological analysis revealed that all prostheses were intact. Except for 2 early deaths, the other 8 prostheses were endothelialized with mild inflammation, foreign body reactions, and intimal fibrosis. The mean cross-sectional area of the sutureless region was reduced by 26.4 % (range, 1.3-39.1 %). Conclusions: The safety and effectiveness of the novel SIS graft prosthesis were acceptable, and the delivery system exhibited a promising performance. Using the SIS graft prosthesis in TAAD surgery was expected to simplify the procedures and shorten the circulatory arrest time. Further large-scale clinical trials are required to verify these findings.

3.
Nano Lett ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775230

ABSTRACT

Understanding the nucleation mechanism of domains is essential for domain engineering of perovskite ferroelectric materials. We proposed and examined atomistic details for nucleating ferroelastic (FS) domains by integrating topological analysis and first-principles calculations. FS domains are crystallographically treated as deformation twins. The conventional shear-shuffle nucleation mechanism under simple shear deformation is ruled out because the 1-layer elementary twinning disconnection (TD) cannot nucleate and glide in a perfect matrix. Thus, the pure-shuffle nucleation mechanism under pure shear deformation is proposed due to kinetically favored atomic shuffling. The coherency stress associated with the coherent nucleus is relaxed via forming misfit dislocations, accompanied by formation and sharpening of diffused (110)m∥(110)d domain walls (DWs). The sharp DWs enable growth of the FS nucleus through successive nucleation and gliding of TDs. These findings enrich the knowledge of domain behavior in perovskite ferroelectric materials.

4.
Aging Cell ; : e14210, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783692

ABSTRACT

The nucleus pulposus is in a hypoxic environment in the human body, and when intervertebral disc degeneration (IVDD) occurs, the hypoxic environment is disrupted. Nucleus pulposus cell (NPC) ferroptosis is one of the causes of IVDD. N6-methyladenosine (m6A) and its reader protein YTHDF1 regulate cellular activities by affecting RNA metabolism. However, the regulation of ferroptosis in NPCs by m6A-modified RNAs under hypoxic conditions has not been as well studied. In this study, through in vitro and in vivo experiments, we explored the underlying mechanism of HIF-1α and YTHDF1 in regulating ferroptosis in NPCs. The results indicated that the overexpression of HIF-1α or YTHDF1 suppressed NPC ferroptosis; conversely, the knockdown of HIF-1α or YTHDF1 increased ferroptosis levels in NPCs. Luciferase reporter assays and chromatin immunoprecipitation demonstrated that HIF-1α regulated YTHDF1 transcription by directly binding to its promoter region. Polysome profiling results showed that YTHDF1 promoted the translation of SLC7A11 and consequently the expression of the anti-ferroptosis protein GPX4 by binding to m6A-modified SLC7A11 mRNA. In conclusion, HIF-1α-induced YTHDF1 expression reduces NPC ferroptosis and delays IVDD by promoting SLC7A11 translation in a m6A-dependent manner.

5.
Bioorg Med Chem ; 107: 117762, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759254

ABSTRACT

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.

6.
BMC Biol ; 22(1): 116, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764012

ABSTRACT

BACKGROUND: Verticillium wilt, caused by the fungus Verticillium dahliae, is a soil-borne vascular fungal disease, which has caused great losses to cotton yield and quality worldwide. The strain KRS010 was isolated from the seed of Verticillium wilt-resistant Gossypium hirsutum cultivar "Zhongzhimian No. 2." RESULTS: The strain KRS010 has a broad-spectrum antifungal activity to various pathogenic fungi as Verticillium dahliae, Botrytis cinerea, Fusarium spp., Colletotrichum spp., and Magnaporthe oryzae, of which the inhibition rate of V. dahliae mycelial growth was 73.97% and 84.39% respectively through confrontation test and volatile organic compounds (VOCs) treatments. The strain was identified as Bacillus altitudinis by phylogenetic analysis based on complete genome sequences, and the strain physio-biochemical characteristics were detected, including growth-promoting ability and active enzymes. Moreover, the control efficiency of KRS010 against Verticillium wilt of cotton was 93.59%. After treatment with KRS010 culture, the biomass of V. dahliae was reduced. The biomass of V. dahliae in the control group (Vd991 alone) was 30.76-folds higher than that in the treatment group (KRS010+Vd991). From a molecular biological aspect, KRS010 could trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Its extracellular metabolites and VOCs inhibited the melanin biosynthesis of V. dahliae. In addition, KRS010 had been characterized as the ability to promote plant growth. CONCLUSIONS: This study indicated that B. altitudinis KRS010 is a beneficial microbe with a potential for controlling Verticillium wilt of cotton, as well as promoting plant growth.


Subject(s)
Bacillus , Gossypium , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacillus/physiology , Gossypium/microbiology , Gossypium/growth & development , Ascomycota/physiology , Verticillium/physiology , Phylogeny , Biological Control Agents
7.
Adv Healthc Mater ; : e2401103, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691848

ABSTRACT

Intervertebral disc degeneration (IVDD) is the primary cause of low back pain, with oxidative stress being a recognized factor that causes its development. Presently, low back pain imposes a significant global economic burden. However, the effectiveness of treatments for IVDD remains extremely limited. Therefore, this study aims to explore innovative and effective IVDD treatments by focusing on oxidative stress as a starting point. In this study, an injectable reactive oxygen species-responsive hydrogel (PVA-tsPBA@SLC7A11 modRNA) is developed, designed to achieve rapid loading and selective release of chemically synthesized modified mRNA (modRNA). SLC7A11 modRNA is specifically used to upregulate the expression of the ferroptosis marker SLC7A11. The local injection of PVA-tsPBA@SLC7A11 modRNA into the degenerated intervertebral disc (IVD) results in the cleavage of PVA-tsPBA, leading to the release of enclosed SLC7A11 modRNA. The extent of SLC7A11 modRNA release is directly proportional to the severity of IVDD, ultimately ameliorating IVDD by inhibiting ferroptosis in nucleus pulposus cells (NPCs). This study proposes an innovative system of PVA-tsPBA hydrogel-encapsulated modRNA, representing a potential novel treatment strategy for patients with early-stage IVDD.

8.
J Nanobiotechnology ; 22(1): 281, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790015

ABSTRACT

BACKGROUND: Cartilaginous endplate (CEP) degeneration, which is an important contributor to intervertebral disc degeneration (IVDD), is characterized by chondrocyte death. Accumulating evidence has revealed that dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and dysfunction lead to apoptosis during CEP degeneration and IVDD. Exosomes are promising agents for the treatment of many diseases, including osteoporosis, osteosarcoma, osteoarthritis and IVDD. Despite their major success in drug delivery, the full potential of exosomes remains untapped. MATERIALS AND METHODS: In vitro and in vivo models of CEP degeneration were established by using lipopolysaccharide (LPS). We designed genetically engineered exosomes (CAP-Nrf2-Exos) expressing chondrocyte-affinity peptide (CAP) on the surface and carrying the antioxidant transcription factor nuclear factor E2-related factor 2 (Nrf2). The affinity between CAP-Nrf2-Exos and CEP was evaluated by in vitro internalization assays and in vivo imaging assays. qRT‒PCR, Western blotting and immunofluorescence assays were performed to examine the expression level of Nrf2 and the subcellular localization of Nrf2 and Drp1. Mitochondrial function was measured by the JC-1 probe and MitoSOX Red. Mitochondrial morphology was visualized by MitoTracker staining and transmission electron microscopy (TEM). After subendplate injection of the engineered exosomes, the degree of CEP degeneration and IVDD was validated radiologically and histologically. RESULTS: We found that the cargo delivery efficiency of exosomes after cargo packaging was increased by surface modification. CAP-Nrf2-Exos facilitated chondrocyte-targeted delivery of Nrf2 and activated the endogenous antioxidant defence system in CEP cells. The engineered exosomes inhibited Drp1 S616 phosphorylation and mitochondrial translocation, thereby preventing mitochondrial fragmentation and dysfunction. LPS-induced CEP cell apoptosis was alleviated by CAP-Nrf2-Exo treatment. In a rat model of CEP degeneration, the engineered exosomes successfully attenuated CEP degeneration and IVDD and exhibited better repair capacity than natural exosomes. CONCLUSION: Collectively, our findings showed that exosome-mediated chondrocyte-targeted delivery of Nrf2 was an effective strategy for treating CEP degeneration.


Subject(s)
Chondrocytes , Exosomes , Intervertebral Disc Degeneration , Mitochondrial Dynamics , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Exosomes/metabolism , Animals , NF-E2-Related Factor 2/metabolism , Chondrocytes/metabolism , Rats , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Male , Mitochondria/metabolism , Dynamins/metabolism , Dynamins/genetics , Cartilage/metabolism , Cartilage/pathology , Drug Delivery Systems/methods , Apoptosis
9.
Sci Rep ; 14(1): 11329, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760372

ABSTRACT

Active soil organic carbon (SOC) fractions are major driving factors of soil fertility. Understanding the effects of water and fertilizer management on changes in active SOC fractions helps improve soil quality and maintain high agricultural productivity. We conducted a 3-year field experiment in Northeast China. In this experiment, natural soil (CKT) was used as a blank, and two irrigation regimes were established: conventional flooded irrigation (FI) and controlled irrigation (CI). Four nitrogen application levels were set for both irrigation regimes under deep placement of basal fertilizer N: Nd0 (0 kg ha-1), Nd (110 kg ha-1), Nd1 (99 kg ha-1), and Nd2 (88 kg ha-1). After 3 years, at similar N fertilizer application rate, the rice yield, total organic carbon (TOC), and active SOC fraction content of CI were higher under CI than FI. The growth rate of rice yield was 3.8% - 8.63% under CI than FI. Under CI, the rice yield, active SOC fractions contents and carbon pool management index (CPMI) did not decrease with decreasing N application rate but instead reached the highest level in the CNd1 treatment. Overall, CI with Nd1 treatment appears to be the best practice for improving soil fertility and crop productivity in Northeast China.

10.
BMC Med Genomics ; 17(1): 114, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685029

ABSTRACT

OBJECTIVES: The risk of intracranial aneurysms (IAs) development and rupture is significantly higher in patients with periodontitis (PD), suggesting an association between the two. However, the specific mechanisms of association between these two diseases have not been fully investigated. MATERIALS AND METHODS: In this study, we downloaded IAs and PD data from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. The protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) was performed to identified key modules and key crosstalk genes. In addition, the immune cell landscape was assessed and the correlation of key crosstalk genes with each immune cell was calculated. Finally, transcription factors (TFs) regulating key crosstalk genes were explored. RESULTS: 127 overlapping DEGs were identified and functional enrichment analysis highlighted the important role of immune reflection in the pathogenesis of IAs and PD. We identified ITGAX and COL4A2 as key crosstalk genes. In addition, the expression of multiple immune cells was significantly elevated in PDs and IAs compared to controls, and both key crosstalk genes were significantly negatively associated with Macrophages M2. Finally, GATA2 was identified as a potential key transcription factor (TF), which regulates two key crosstalk gene. CONCLUSIONS: The present study identifies key crosstalk genes and TF in PD and IAs, providing new insights for further study of the co-pathogenesis of PD and IAs from an immune and inflammatory perspective. Also, this is the first study to report the above findings.


Subject(s)
Computational Biology , Gene Regulatory Networks , Intracranial Aneurysm , Periodontitis , Protein Interaction Maps , Intracranial Aneurysm/genetics , Humans , Computational Biology/methods , Periodontitis/genetics , Gene Expression Profiling , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Ecotoxicol Environ Saf ; 276: 116334, 2024 May.
Article in English | MEDLINE | ID: mdl-38626607

ABSTRACT

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells , Liver Cirrhosis , Nuclear Receptor Subfamily 4, Group A, Member 2 , Signal Transduction , Thioacetamide , Animals , Thioacetamide/toxicity , Hepatic Stellate Cells/drug effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Male , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Bridged-Ring Compounds/pharmacology , Mice, Inbred C57BL , Inflammation/chemically induced , Inflammation/drug therapy , Epithelial-Mesenchymal Transition/drug effects
12.
Curr Issues Mol Biol ; 46(4): 3741-3751, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38666963

ABSTRACT

The "Indica to Japonica" initiative in China focuses on adapting Japonica rice varieties from the northeast to the unique photoperiod and temperature conditions of lower latitudes. While breeders can select varieties for their adaptability, the sensitivity to light and temperature often complicates and prolongs the process. Addressing the challenge of cultivating high-yield, superior-quality Japonica rice over expanded latitudinal ranges swiftly, in the face of these sensitivities, is critical. Our approach harnesses the CRISPR-Cas9 technology to edit the EHD1 gene in the premium northeastern Japonica cultivars Jiyuanxiang 1 and Yinongxiang 12, which are distinguished by their exceptional grain quality-increased head rice rates, gel consistency, and reduced chalkiness and amylose content. Field trials showed that these new ehd1 mutants not only surpass the wild types in yield when grown at low latitudes but also retain the desirable traits of their progenitors. Additionally, we found that disabling Ehd1 boosts the activity of Hd3a and RFT1, postponing flowering by approximately one month in the ehd1 mutants. This research presents a viable strategy for the accelerated breeding of elite northeastern Japonica rice by integrating genomic insights with gene-editing techniques suitable for low-latitude cultivation.

13.
Nano Lett ; 24(18): 5474-5480, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652833

ABSTRACT

Grain boundaries (GBs) and twin boundaries (TBs) in copper (Cu) are two major planar defects that influence electrical conductivity due to their complex electron transport characteristics, involving electron scattering and electron concentration. Understanding their local electronic states is crucial for the design of future conductor materials. In this study, we characterized electron behaviors at TBs and GBs within one Cu grain using atomic force microscopy. Our findings revealed that, compared with GBs, TBs exhibit better current transport capability (direct-current mode) and larger electromagnetic loss (high-frequency microwave mode). Both kelvin probe force microscopy and theoretical analysis suggested that TBs with smaller lattice disorder possess lower density of states at the Fermi level. The reduced density of states may result in decreased electron scattering and a lower electron concentration at TBs. The latter can be highlighted by the high-frequency skinning effect, manifested as larger electromagnetic loss and weaker high-frequency conductivity.

14.
Heart Lung ; 66: 78-85, 2024.
Article in English | MEDLINE | ID: mdl-38593677

ABSTRACT

BACKGROUND: Early cardiac rehabilitation plays a crucial role in the recovery of patients with ST-segment elevation acute myocardial infarction (STEMI) following percutaneous coronary intervention (PCI). This study sought to determine the effect of a program of sitting Baduanjin exercises on early cardiac rehabilitation. OBJECTIVE: The goal of this study was to investigate the effects of sitting Baduanjin exercises on cardiovascular and psychosocial functions in patients with STEMI following PCI. METHODS: This quasi-experimental study employed a randomized, non-equivalent group design. Patients in the intervention group received daily sitting Baduanjin training in addition to a series of seven-step rehabilitation exercises, whereas those in the control group received only the seven-step rehabilitation training, twice daily. Differences in heart rate variability (HRV) indicators, exercise capacity (Six-Minute Walking Distance; 6-MWD), anxiety (Generalized Anxiety Disorder-7; GAD-7), and depression (Patient Health Questionnaire-9; PHQ-9) between the two study groups during hospitalization were analyzed. RESULTS: Patients in the intervention group exhibited lower rates of abnormalities in the time domain and frequency domain parameters of HRV. The median scores of GAD-7 and PHQ-9 in both groups were lower than those at the time of admission, with the intervention group exhibiting lower scores than the control group (P < 0.001; P < 0.001, respectively). The 6-MWD after the intervention was greater in the intervention group compared to the control group (P = 0.014). CONCLUSIONS: We found that sitting Baduanjin training has the potential to enhance HRV, cardiac function, and psychological well-being in patients with STEMI after PCI. This intervention can potentially improve the exercise capacity of a patient before discharge.


Subject(s)
Cardiac Rehabilitation , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Percutaneous Coronary Intervention/methods , Male , ST Elevation Myocardial Infarction/surgery , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/rehabilitation , Female , Middle Aged , Cardiac Rehabilitation/methods , Heart Rate/physiology , Aged , Sitting Position , Qigong/methods , Treatment Outcome , Exercise Therapy/methods
15.
Chem Commun (Camb) ; 60(39): 5177-5180, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38647014

ABSTRACT

A vertically-stacked MXene/rGO composite membrane with ultrashort transport channels is reported here, which demonstrated outstanding molecular sieving, i.e., H2/CO2 selectivity of up to 83 together with high H2 permeance of 2.7 × 10-7 mol m-2 s-1 Pa-1 at 120 °C, highlighting its applicability for H2/CO2 separation in CO2 capture and sequestration.

16.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626424

ABSTRACT

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Subject(s)
Activating Transcription Factors , Chondrocytes , Exosomes , Mitochondria , Osteoarthritis , RNA, Messenger , Unfolded Protein Response , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/therapy , Exosomes/metabolism , Exosomes/chemistry , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Unfolded Protein Response/drug effects , Activating Transcription Factors/metabolism , Activating Transcription Factors/chemistry , Activating Transcription Factors/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Chondrocytes/metabolism , Chondrocytes/drug effects , Humans , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/drug effects
17.
Phytomedicine ; 128: 155412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579666

ABSTRACT

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Subject(s)
HaCaT Cells , Isoflavones , Psoriasis , Signal Transduction , Isoflavones/pharmacology , Psoriasis/drug therapy , Animals , Signal Transduction/drug effects , Humans , Mice , Interferons , Cell Survival/drug effects , Keratinocytes/drug effects , Inflammation/drug therapy , Astragalus propinquus/chemistry , Mice, Inbred BALB C , Male , Disease Models, Animal
18.
Fitoterapia ; 175: 105982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685512

ABSTRACT

A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.


Subject(s)
Anti-Inflammatory Agents , Eugenia , Lignans , Naphthoquinones , Nitric Oxide , Phytochemicals , Mice , RAW 264.7 Cells , Animals , Nitric Oxide/metabolism , Molecular Structure , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/isolation & purification , Naphthoquinones/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Eugenia/chemistry , Respiratory Syncytial Viruses/drug effects , China
19.
Leuk Res ; 141: 107451, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38663164

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are associated with development and progression of multiple myeloma (MM). However, the role and mechanism of circ_0005615 in MM have not been elucidated. METHODS: Circ_0005615 was determined by GEO database. quantitative RT-PCR was performed to confirm the expression of circ_0005615 in peripheral blood of MM patients and MM cells. The roles of circ_0005615 in MM were analyzed using CCK8, transwell invasion, cell apoptosis and tumor xenograft experiments. Bioinformatics tools, RIP and RNA pull down assays were conducted to explore the downstream of circ_0005615. Furthermore, the mechanism was investigated by quantitative RT-PCR, western blot, dot blot and meRIP-PCR assays. RESULTS: Circ_0005615 was upregulated in MM. Overexpression of circ_0005615 promoted cell viability and invasion, and suppressed apoptosis in vitro, which were opposite when circ_0005615 was knockdowned. Mechanistically, EIF4A3, a RNA-binding protein (RBP), could directly bind to circ_0005615 and ALKBH5, where ALKBH5 could directly combine with MAP3K4, forming a circ_0005615- EIF4A3-ALKBH5-MAP3K4 module. Furthermore, circ_0005615 overexpression increased m6A methylation of MAP3K4 by inhibiting ALKBH5, leading to decreased MAP3K4. Further functional experiments indicated that ALKBH5 overexpression weakened the promoting roles of circ_0005615 overexpression in MAP3K4 m6A methylation and tumor progression in MM. The above functions and mechanism were also verified in vivo. CONCLUSIONS: Elevated circ_0005615 decreased MAP3K4 mediated by ALKBH5 through interacting with EIF4A3, thereby accelerating MM progression. Circ_0005615 might be a promising biomarker and target of MM.

20.
BMC Cancer ; 24(1): 435, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589858

ABSTRACT

BACKGROUND: To establish and validate a predictive model combining pretreatment multiparametric MRI-based radiomic signatures and clinical characteristics for the risk evaluation of early rapid metastasis in nasopharyngeal carcinoma (NPC) patients. METHODS: The cutoff time was used to randomly assign 219 consecutive patients who underwent chemoradiation treatment to the training group (n = 154) or the validation group (n = 65). Pretreatment multiparametric magnetic resonance (MR) images of individuals with NPC were employed to extract 428 radiomic features. LASSO regression analysis was used to select radiomic features related to early rapid metastasis and develop the Rad-score. Blood indicators were collected within 1 week of pretreatment. To identify independent risk variables for early rapid metastasis, univariate and multivariate logistic regression analyses were employed. Finally, multivariate logistic regression analysis was applied to construct a radiomics and clinical prediction nomogram that integrated radiomic features and clinical and blood inflammatory predictors. RESULTS: The NLR, T classification and N classification were found to be independent risk indicators for early rapid metastasis by multivariate logistic regression analysis. Twelve features associated with early rapid metastasis were selected by LASSO regression analysis, and the Rad-score was calculated. The AUC of the Rad-score was 0.773. Finally, we constructed and validated a prediction model in combination with the NLR, T classification, N classification and Rad-score. The area under the curve (AUC) was 0.936 (95% confidence interval (95% CI): 0.901-0.971), and in the validation cohort, the AUC was 0.796 (95% CI: 0.686-0.905). CONCLUSIONS: A predictive model that integrates the NLR, T classification, N classification and MR-based radiomics for distinguishing early rapid metastasis may serve as a clinical risk stratification tool for effectively guiding individual management.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/therapy , Radiomics , Biomarkers , Nomograms , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/therapy , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...