Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 6(3)2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29986440

ABSTRACT

Hematopoietic stem cells (HSCs) yield both the myeloid and lymphoid lineages of blood cells and can be reprogrammed into tumor antigen (Ag)-specific CD8⁺ cytotoxic T lymphocytes (CTLs) to prevent tumor growth. However, the optimal approach for differentiating tumor Ag-specific CTLs from HSCs, such as HSC-CTLs, remains elusive. In the current study, we showed that a combination of genetic modification of HSCs and in vivo T cell development facilitates the generation of Ag-specific CTLs that suppressed tumor growth. Murine HSCs, which were genetically modified with chicken ovalbumin (OVA)-specific T cell receptor, were adoptively transferred into recipient mice. In the following week, mice were administered with intraperitoneal injections of an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7) three times. After another two weeks, mice received a subcutaneous inoculation of B16-OVA melanoma cells that express OVA as a surrogate tumor Ag, before the anti-tumor activity of HSC-derived T cells was assessed. OVA-specific CTLs developed in vivo and greatly responded to OVA Ag stimulation ex vivo. In addition, mice receiving genetically modified HSCs and in vivo priming established anti-tumor immunity, resulting in the suppression of tumor growth. These results reported in this present study provide an alternative strategy to develop protective cancer vaccines by using genetically modified HSCs.

2.
Oncoimmunology ; 6(7): e1334027, 2017.
Article in English | MEDLINE | ID: mdl-28811978

ABSTRACT

Optimal approaches to differentiate tumor antigen-specific cytotoxic T lymphocytes (CTLs) from pluripotent stem cells (PSCs) remain elusive. In the current study, we showed that combination of in vitro priming through Notch ligands and in vivo development facilitated the generation of tumor Ag-specific CTLs that effectively inhibited tumor growth. We co-cultured the murine induced PSCs (iPSCs) genetically modified with tyrosinase-related protein 2 (TRP2)-specific T cell receptors with OP9 cell line expressing both Notch ligands Delta-like 1 and 4 (OP9-DL1/DL4) for a week before adoptively transferred into recipient C67BL/6 mice. Three weeks later, B16 melanoma cells were inoculated subcutaneously, and the antitumor activity of the iPSC-derived T cells was assessed. We observed the development of the TRP2-specific iPSC-CD8+ T cells that responded to Ag stimulation and infiltrated into melanoma tissues, significantly inhibited the tumor growth, and improved the survival of the tumor-bearing mice. Thus, this approach may provide a novel effective strategy to treatment of malignant tumors.

3.
Genes (Basel) ; 8(3)2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28272325

ABSTRACT

Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling-regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc-dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling-regulated differentiation of T lymphocytes from hematopoietic stem cells.

4.
Sci Rep ; 6: 20588, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26846186

ABSTRACT

Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders.


Subject(s)
Adoptive Transfer/methods , Arthritis, Experimental/therapy , Autoimmunity , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes, Regulatory/cytology , Animals , Arthritis, Experimental/immunology , Cell Line , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/immunology , Transduction, Genetic
5.
Cell Transplant ; 25(5): 811-27, 2016.
Article in English | MEDLINE | ID: mdl-26777320

ABSTRACT

Adoptive cell transfer (ACT) of antigen (Ag)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a highly promising treatment for a variety of diseases. Naive or central memory T-cell-derived effector CTLs are optimal populations for ACT-based immunotherapy because these cells have a high proliferative potential, are less prone to apoptosis than terminally differentiated cells, and have the higher ability to respond to homeostatic cytokines. However, such ACT with T-cell persistence is often not feasible due to difficulties in obtaining sufficient cells from patients. Here we present that in vitro differentiated HSCs of engineered PSCs can develop in vivo into tumor Ag-specific naive CTLs, which efficiently suppress melanoma growth. Mouse-induced PSCs (iPSCs) were retrovirally transduced with a construct encoding chicken ovalbumin (OVA)-specific T-cell receptors (TCRs) and survival-related proteins (i.e., BCL-xL and survivin). The gene-transduced iPSCs were cultured on the delta-like ligand 1-expressing OP9 (OP9-DL1) murine stromal cells in the presence of murine recombinant cytokines (rFlt3L and rIL-7) for a week. These iPSC-derived cells were then intravenously adoptively transferred into recipient mice, followed by intraperitoneal injection with an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7). Two weeks later, naive OVA-specific CD8(+) T cells were observed in the mouse peripheral lymphatic system, which were responsive to OVA-specific stimulation. Moreover, the mice were resistant to the challenge of B16-OVA melanoma induction. These results indicate that genetically modified stem cells may be used for ACT-based immunotherapy or serve as potential vaccines.


Subject(s)
Immunotherapy, Adoptive/methods , Melanoma, Experimental/therapy , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/transplantation , Animals , Antigens, Neoplasm/immunology , Cell Line, Tumor , Cytokines/pharmacology , Female , Genetic Engineering , Male , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Receptors, Antigen, T-Cell/genetics
6.
Open Biol ; 6(1): 150208, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26791245

ABSTRACT

The signalling mechanisms of costimulation in the development of memory T cells remain to be clarified. Here, we show that the transcription factor c-Myc in CD8(+) T cells is controlled by costimulatory molecules, which modulates the development of memory CD8(+) T cells. C-Myc expression was dramatically reduced in Cd28(-/-) or Ox40(-/-) memory CD8(+) T cells, and c-Myc over-expression substantially reversed the defects in the development of T-cell memory following viral infection. C-Myc regulated the expression of survivin, an inhibitor of apoptosis, which promoted the generation of virus-specific memory CD8(+) T cells. Moreover, over-expression of survivin with bcl-xL, a downstream molecule of NF-κB and intracellular target of costimulation that controls survival, in Cd28(-/-) or Ox40(-/-) CD8(+) T cells, reversed the defects in the generation of memory T cells in response to viral infection. These results identify c-Myc as a key controller of memory CD8(+) T cells from costimulatory signals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Virus Diseases/immunology , Animals , CD28 Antigens/metabolism , Gene Expression Regulation , I-kappa B Kinase/metabolism , Immunity , Immunologic Memory/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice, Transgenic , NF-kappa B/metabolism , Receptors, OX40 , Repressor Proteins/metabolism , Survivin , Transcription, Genetic , bcl-X Protein/metabolism
7.
PLoS One ; 8(8): e70635, 2013.
Article in English | MEDLINE | ID: mdl-23936461

ABSTRACT

The TNFR family member OX40 (CD134) is critical for optimal clonal expansion and survival of T cells. However, the intracellular targets of OX40 in CD8 T cells are not fully understood. Here we show that A1, a Bcl-2 family protein, is regulated by OX40 in effector CD8 T cells. In contrast to wild-type T cells, OX40-deficient CD8 T cells failed to maintain A1 expression driven by antigen. Conversely, enforced OX40 stimulation promoted A1 expression. In both situations, the expression of A1 directly correlated with CD8 T cell survival. In addition, exogenous expression of A1 in OX40-deficient CD8 T cells reversed their survival defect in vitro and in vivo. Moreover, forced expression of A1 in CD8 T cells from OX40-deficient mice restored the ability of these T cells to suppress tumor growth in a murine model. These results indicate that OX40 signals regulate CD8 T cell survival at least in part through maintaining expression of the anti-apoptotic molecule A1, and provide new insight into the mechanism by which OX40 may impact anti-tumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, OX40/metabolism , Tumor Suppressor Proteins/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Survival , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Receptors, OX40/deficiency , Receptors, OX40/genetics , Signal Transduction , Up-Regulation
8.
Eur J Immunol ; 43(7): 1914-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23616302

ABSTRACT

Survivin, an inhibitor of apoptosis family molecule, has been proposed as a crucial intermediate in the signaling pathways leading to T-cell development, proliferation, and expansion. However, the importance of survivin to T-cell-driven inflammatory responses has not been demonstrated. Here, we show that survivin transgenic mice exhibit an increased antigen-driven Th2 lung inflammation and that constitutive expression of survivin reversed the defective lung inflammation even in the absence of OX40 costimulation. We found that OX40-deficient mice were compromised in generating Th2 cells, airway eosinophilia, and IgE responses. In contrast, OX40-deficient/survivin transgenic mice generated normal Th2 responses and exhibited strong lung inflammation. These results suggest that OX40 costimulation crucially engages survivin during antigen-mediated Th2 responses. These findings also promote the notion that OX40 costimulation regulates allergic responses or lung inflammation by targeting survivin thereby enhancing T-cell proliferation and resulting in more differentiated Th2 cells in the allergic inflammatory response.


Subject(s)
Hypersensitivity/immunology , Inhibitor of Apoptosis Proteins/immunology , Pneumonia/immunology , Receptors, OX40/immunology , Repressor Proteins/immunology , Th2 Cells/immunology , Animals , Cell Differentiation/immunology , Hypersensitivity/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pneumonia/metabolism , Receptors, OX40/deficiency , Repressor Proteins/metabolism , Survivin , Th2 Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...