Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Opt Lett ; 49(11): 3058-3061, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824327

ABSTRACT

Lensless imagers based on diffusers or encoding masks enable high-dimensional imaging from a single-shot measurement and have been applied in various applications. However, to further extract image information such as edge detection, conventional post-processing filtering operations are needed after the reconstruction of the original object images in the diffuser imaging systems. Here, we present the concept of a temporal compressive edge detection method based on a lensless diffuser camera, which can directly recover a time sequence of edge images of a moving object from a single-shot measurement, without further post-processing steps. Our approach provides higher image quality during edge detection, compared with the "conventional post-processing method." We demonstrate the effectiveness of this approach by both numerical simulation and experiments. The proof-of-concept approach can be further developed with other image post-processing operations or versatile computer vision assignments toward task-oriented intelligent lensless imaging systems.

2.
Future Sci OA ; 10(1): FSO926, 2024.
Article in English | MEDLINE | ID: mdl-38827800

ABSTRACT

Aim: This population-based analysis aimed to explore the associations among marital status, prognosis and treatment of stage I non-small-cell lung cancer. Materials & methods: The propensity score matching (PSM), logistic regression and Cox proportional hazards model were used in this study. Results: A total of 13,937 patients were included. After PSM, 10579 patients were co-insured. The married were more likely to receive surgical treatment compared with the unmarried patients (OR: 1.841, p < 0.001), and patients who underwent surgery also tended to have better survival (HR: 0.293, p < 0.001). Conclusion: Compared with unmarried patients, a married group with stage I NSCLC had timely treatment and more satisfactory survival. This study highlights the importance of prompt help and care for unmarried patients.

3.
Opt Lett ; 49(9): 2365-2368, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691720

ABSTRACT

Near-infrared nanosecond (ns) single-longitudinal-mode (SLM) pulse light generated from an optical parametric oscillator (OPO) is an important source in nonlinear optics and high-precision spectral analysis. In this Letter, a stable SLM near-infrared ns pulse light source generated from the OPO is presented, which is achieved by developing a seed-injection automatic locking technique based on a pulse-integrated photodetector (PIPD). Depending on the PIPD, the peak power of the pulse light detected by the photodiode is converted to the average power by integrating several pulses. As a result, the detector saturation is thoroughly eliminated, and the interference signal including the resonance point between seed and pulse lights can easily be attained by scanning the resonator length. On this basis, a microcontroller unit (MCU) is employed to realize automatic locking by looking for the minimum value of the interference signal. Finally, a SLM 824 nm pulse light source with an output power of 20.5 W and a linewidth of 51.42 MHz is obtained. The presented method can pave the way to implement a low-cost and compact high-average-power SLM pulse OPO.

4.
RSC Adv ; 14(23): 15840-15847, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756853

ABSTRACT

Induced lysosomal membrane permeabilization (LMP) by peptide self-assembly has emerged as an effective platform for lysosome-targeted cancer therapy. In this study, we shift this strategical paradigm and present an innovative approach to LMP induction through amino acid-based self-assembly. Pyrene-capped tyrosine (Py-Tyr), as a proof-of-concept molecule, is designed with acidity-responsive self-assembly. Under acidic conditions (pH 4), Py-Tyr is protonated with reduced charge repulsion, and self-assembles into micrometer-scaled aggregates, which exceed the biological size of lysosomes. Cell experiments showed that Py-Tyr specifically accumulates in lysosomes and induces lysosome rupture, leading to the release of cathepsin B into the cytoplasm for subsequent apoptosis activation in cancer cells. This study capitalizes on the concept of amino acid assembly for efficient LMP induction, providing a simple and versatile platform for precise and effective therapeutic interventions in cancer therapy.

5.
J Am Chem Soc ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805671

ABSTRACT

Communication between cells is crucial to the survival of both uni- and multicellular organisms. The primary mode of communication involves chemical cues. There is great current interest in mimicking this behavior in synthetic cells to understand the physical basis of intercellular communication and design collective functional behavior. Using liposomal cell mimics, we demonstrate how a chemical input can elicit a mechanical response (enhanced motility). We employed a single substrate to trigger enzyme cascade-induced control of the diffusion of up to three different liposome populations. Furthermore, substrate competition allows temporal control over enhanced diffusion. The use of enzyme cascades to propagate chemical signals provides a robust and efficient mechanism for diverse populations of protocells to coordinate their motion in response to signals from each other.

6.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695060

ABSTRACT

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Subject(s)
Alkaline Phosphatase , Anions , Coordination Complexes , Iridium , Osteosarcoma , Iridium/chemistry , Humans , Osteosarcoma/pathology , Osteosarcoma/metabolism , Alkaline Phosphatase/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Anions/chemistry , Cell Line, Tumor
7.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38787765

ABSTRACT

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Subject(s)
Alkaloids , Neuroprotective Agents , Peptides, Cyclic , Picrasma , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/isolation & purification , Mice , Picrasma/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Humans , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Plant Leaves/chemistry , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
8.
Cardiovasc Diabetol ; 23(1): 121, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581024

ABSTRACT

BACKGROUND: This study investigates the relationship between triglyceride-glucose (TyG) index trajectories and the results of ablation in patients with stage 3D atrial fibrillation (AF). METHODS: A retrospective cohort study was carried out on patients who underwent AF Radiofrequency Catheter Ablation (RFCA) at the Cardiology Department of the Fourth Affiliated Hospital of Zhejiang University and Taizhou Hospital of Zhejiang Province from January 2016 to December 2022. The main clinical endpoint was determined as the occurrence of atrial arrhythmia for at least 30 s following a 3-month period after ablation. Using a latent class trajectory model, different trajectory groups were identified based on TyG levels. The relationship between TyG trajectory and the outcome of AF recurrence in patients was assessed through Kaplan-Meier survival curve analysis and multivariable Cox proportional hazards regression model. RESULTS: The study included 997 participants, with an average age of 63.21 ± 9.84 years, of whom 630 were males (63.19%). The mean follow-up period for the participants was 30.43 ± 17.75 months, during which 200 individuals experienced AF recurrence. Utilizing the minimum Bayesian Information Criterion (BIC) and the maximum Entropy principle, TyG levels post-AF RFCA were divided into three groups: Locus 1 low-low group (n = 791), Locus 2 low-high-low group (n = 14), and Locus 3 high-high group (n = 192). Significant differences in survival rates among the different trajectories were observed through the Kaplan-Meier curve (P < 0.001). Multivariate Cox regression analysis showed a significant association between baseline TyG level and AF recurrence outcomes (HR = 1.255, 95% CI: 1.087-1.448). Patients with TyG levels above 9.37 had a higher risk of adverse outcomes compared to those with levels below 8.67 (HR = 2.056, 95% CI: 1.335-3.166). Furthermore, individuals in Locus 3 had a higher incidence of outcomes compared to those in Locus 1 (HR = 1.580, 95% CI: 1.146-2). CONCLUSION: The TyG trajectories in patients with stage 3D AF are significantly linked to the outcomes of AF recurrence. Continuous monitoring of TyG levels during follow-up may help in identifying patients at high risk of AF recurrence, enabling the early application of effective interventions.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Male , Humans , Middle Aged , Aged , Female , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Atrial Fibrillation/etiology , Retrospective Studies , Bayes Theorem , Treatment Outcome , Risk Factors , Catheter Ablation/adverse effects , Catheter Ablation/methods , Recurrence
9.
Biomacromolecules ; 25(5): 3087-3097, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38584438

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) play a crucial role in regulating cancer growth and migration by mediating interactions with growth factors. In this study, we developed a self-assembling peptide (S1) containing a sulfate group to simulate the contiguous sulfated regions (S-domains) in heparan sulfate for growth factor binding, aiming to sequester growth factors like VEGF. Spectral and structural studies as well as simulation studies suggested that S1 self-assembled into nanostructures similar to the heparan sulfate chains and effectively bound to VEGF. On cancer cell surfaces, S1 self-assemblies sequestered VEGF, leading to a reduction in VEGF levels in the medium, consequently inhibiting cancer cell growth, invasion, and angiogenesis. This study highlights the potential of self-assembling peptides to emulate extracellular matrix functions, offering insights for future cancer therapeutic strategies.


Subject(s)
Neoplasm Invasiveness , Peptides , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Heparitin Sulfate/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Cell Proliferation/drug effects , Neovascularization, Pathologic/drug therapy
10.
Bioinspir Biomim ; 19(4)2024 May 07.
Article in English | MEDLINE | ID: mdl-38648793

ABSTRACT

The human toe, characterized by its rigid-flexible structure comprising hard bones and flexible joints, facilitates adaptive and stable movement across varied terrains. In this paper, we utilized a motion capture system to study the adaptive adjustments of toe joints when encountering obstacles. Inspired by the mechanics of toe joints, we proposed a novel design method for a rigid-flexible coupled wheel. The wheel comprises multiple elements: a rigid skeleton, supporting toes, connecting shafts, torsion springs, soft tendons, and damping pads. The torsion springs connect the rigid frame to the supporting toes, enabling them to adapt to uneven terrains and pipes with different diameters. The design was validated through kinematic and dynamic modeling, rigid-flexible coupled dynamics simulation, and stress analysis. Different stiffness coefficients of torsion springs were compared for optimal wheel design. Then, the wheel was applied to a sewer robot, and its performance was evaluated and compared with a pneumatic rubber tire in various experiments, including movement on flat surfaces, overcoming small obstacles, adaptability tests in different terrains, and active driving force tests in dry and wet pipelines. The results prove that the designed wheel showed better stability and anti-slip properties than conventional tires, making it suitable for diverse applications such as pipeline robots, desert vehicles, and lunar rovers.


Subject(s)
Equipment Design , Robotics , Robotics/instrumentation , Humans , Biomechanical Phenomena , Toes/physiology , Biomimetics/methods , Biomimetics/instrumentation , Models, Biological , Toe Joint/physiology , Computer Simulation , Movement/physiology
11.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611820

ABSTRACT

The level of fluoride ions (F-) in the human body is closely related to various pathological and physiological states, and the rapid detection of F- is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2'-hydroxyphenyl)-benzothiazole derivatives towards F- has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F- attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1.

12.
Fitoterapia ; 175: 105908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479621

ABSTRACT

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Subject(s)
Neuroprotective Agents , Picrasma , Plant Leaves , Plant Stems , Sesquiterpenes , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Mice , Humans , Cell Line, Tumor , Molecular Structure , Picrasma/chemistry , Plant Stems/chemistry , Plant Leaves/chemistry , Male , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , China , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL
13.
Chem Biodivers ; 21(5): e202400031, 2024 May.
Article in English | MEDLINE | ID: mdl-38448389

ABSTRACT

Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.


Subject(s)
Benzoxazoles , Colitis, Ulcerative , Interleukin-6 , Animals , Colitis, Ulcerative/drug therapy , Mice , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Benzoxazoles/chemical synthesis , RAW 264.7 Cells , Structure-Activity Relationship , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate , Drug Discovery , Molecular Structure , Dose-Response Relationship, Drug
14.
Article in English | MEDLINE | ID: mdl-38430154

ABSTRACT

Context: Schizophrenia is a common and clinically disabling mental disorder. Many patients with schizophrenia smoke. Research on the effects of smoking on schizophrenia's symptoms are inconsistent. Objective: The study intended to investigate the smoking status of patients with stable schizophrenia to determine the effects of smoking on schizophrenia-related symptoms. Design: The research team performed an case-control study. Setting: The study took place at Beijing Huilongguan Hospital in Beijing, Changping District, China. Participants: Participants were 160 patients at the hospital who had been diagnosed with stable schizophrenia between April 2018 and March 2020. Groups: The research team divided participants into two groups based on their current smoking status: (1) a smoking group with 72 participants and (2) a nonsmoking group with 88 participants. Outcome Measures: The research team: (1) examined the types of antipsychotic drugs that participants received; (2) used a schizophrenia-related scale, the Positive and Negative Syndrome Scale (PANSS), to examine participants' status; (3) examined the smoking habits of the smoking group; and (4) analyzed the correlation between the PANSS score and the smoking group's smoking index. Results: No significant difference existed between the groups in the type of medicine used (P > .05). The smoking group's PANSS total (P = .014), positive symptom (P = .039), and negative symptom (P = .003) scores were significantly lower than those of the nonsmoking group (P < .05). No significant difference existed between the groups in the general psychopathological symptom score (P > .05). The smoking group started smoking between 13 and 24 years of age, with an mean age of 19.11 ± 4.10 years. The group smoked 10-30 cigarettes/d, with a mean smoking amount of 18.4 ± 3.1 cigarettes/d, and the smoking index was 344.7 ± 48.0. The smoking group's smoking index was significantly negatively correlated with the positive symptom, negative symptom, and total PANSS scores (all P = .000). No correlation existed between the smoking index and the general psychopathological symptom score (P > .05). Conclusions: Smoking patients with stable schizophrenia generally exhibit fewer symptoms than nonsmoking patients, which relate to the alleviation of mental tension that smoking can provide.

15.
Mol Biol Rep ; 51(1): 351, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400865

ABSTRACT

The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1ß (IL-1ß). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.


Subject(s)
Inflammasomes , Nervous System Diseases , Humans , Inflammasomes/metabolism , Cytokines/metabolism , Caspase 1/metabolism , Apoptosis , Nervous System Diseases/genetics , Caspases , Intracellular Signaling Peptides and Proteins
16.
ACS Appl Mater Interfaces ; 16(7): 9380-9387, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38319873

ABSTRACT

The dynamic interplay between the composition of lipid membranes and the behavior of membrane-bound enzymes is critical to the understanding of cellular function and viability, and the design of membrane-based biosensing platforms. While there is a significant body of knowledge about how lipid composition and dynamics affect membrane-bound enzymes, little is known about how enzyme catalysis influences the motility and lateral transport on lipid membranes. Using enzyme-attached lipids in supported bilayers (SLBs), we provide direct evidence of catalysis-induced fluid flow that underlies the observed motility on SLBs. Additionally, by using active enzyme patches, we demonstrate the directional transport of tracer particles on SLBs. As expected, enhancing the membrane viscosity by incorporating cholesterol into the bilayer suppresses the overall movement. These are the first steps in understanding diffusion and transport on lipid membranes due to active, out-of-equilibrium processes that are the hallmark of living systems. In general, our study demonstrates how active enzymes can be used to control diffusion and transport in confined 2-D environments.


Subject(s)
Lipid Bilayers , Diffusion , Catalysis
17.
J Alzheimers Dis ; 97(4): 1661-1672, 2024.
Article in English | MEDLINE | ID: mdl-38306031

ABSTRACT

Background: Rapidly growing healthcare demand associated with global population aging has spurred the development of new digital tools for the assessment of cognitive performance in older adults. Objective: To develop a fully automated Mini-Mental State Examination (MMSE) assessment model and validate the model's rating consistency. Methods: The Automated Assessment Model for MMSE (AAM-MMSE) was an about 10-min computerized cognitive screening tool containing the same questions as the traditional paper-based Chinese MMSE. The validity of the AAM-MMSE was assessed in term of the consistency between the AAM-MMSE rating and physician rating. Results: A total of 427 participants were recruited for this study. The average age of these participants was 60.6 years old (ranging from 19 to 104 years old). According to the intraclass correlation coefficient (ICC), the interrater reliability between physicians and the AAM-MMSE for the full MMSE scale AAM-MMSE was high [ICC (2,1)=0.952; with its 95% CI of (0.883,0.974)]. According to the weighted kappa coefficients results the interrater agreement level for audio-related items showed high, but for items "Reading and obey", "Three-stage command", and "Writing complete sentence" were slight to fair. The AAM-MMSE rating accuracy was 87%. A Bland-Altman plot showed that the bias between the two total scores was 1.48 points with the upper and lower limits of agreement equal to 6.23 points and -3.26 points. Conclusions: Our work offers a promising fully automated MMSE assessment system for cognitive screening with pretty good accuracy.


Subject(s)
Cognitive Dysfunction , Humans , Aged , Aged, 80 and over , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Reproducibility of Results , Neuropsychological Tests , Algorithms , Cognition
18.
Aging Clin Exp Res ; 36(1): 37, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345751

ABSTRACT

BACKGROUND: Non-invasive brain stimulation (NIBS) is a burgeoning approach with the potential to significantly enhance cognition and functional abilities in individuals who have undergone a stroke. However, the current evidence lacks robust comparisons and rankings of various NIBS methods concerning the specific stimulation sites and parameters used. To address this knowledge gap, this systematic review and meta-analysis seek to offer conclusive evidence on the efficacy and safety of NIBS in treating post-stroke cognitive impairment. METHODS: A systematic review of randomized control trials (RCT) was performed using Bayesian network meta-analysis. We searched RCT in the following databases until June 2022: Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and EMBASE. We compared any active NIBS to control in terms of improving cognition function and activities of daily living (ADL) capacity following stroke. RESULTS: After reviewing 1577 retrieved citations, a total of 26 RCTs were included. High-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (mean difference 2.25 [95% credible interval 0.77, 3.66]) was identified as a recommended approach for alleviating the global severity of cognition. Dual-rTMS (27.61 [25.66, 29.57]) emerged as a favorable technique for enhancing ADL function. In terms of stimulation targets, the dorsolateral prefrontal cortex exhibited a higher ranking in relation to the global severity of cognition. CONCLUSIONS: Among various NIBS techniques, HF-rTMS stands out as the most promising intervention for enhancing cognitive function. Meanwhile, Dual-rTMS is highly recommended for improving ADL capacity.


Subject(s)
Cognitive Dysfunction , Stroke , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Network Meta-Analysis , Stroke/complications , Stroke/therapy , Brain , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy
19.
Angew Chem Int Ed Engl ; 63(6): e202311556, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38079027

ABSTRACT

Nanoscale enzymes anchored to surfaces act as chemical pumps by converting chemical energy released from enzymatic reactions into spontaneous fluid flow that propels entrained nano- and microparticles. Enzymatic pumps are biocompatible, highly selective, and display unique substrate specificity. Utilizing these pumps to trigger self-propelled motion on the macroscale has, however, constituted a significant challenge and thus prevented their adaptation in macroscopic fluidic devices and soft robotics. Using experiments and simulations, we herein show that enzymatic pumps can drive centimeter-scale polymer sheets along directed linear paths and rotational trajectories. In these studies, the sheets are confined to the air/water interface. With the addition of appropriate substrate, the asymmetric enzymatic coating on the sheets induces chemically driven, buoyancy flows that controllably propel the sheet's motion on the air/water interface. The directionality and speed of the motion can be tailored by changing the pattern of the enzymatic coating, type of enzyme, and nature and concentration of the substrate. This work highlights the utility of biocompatible enzymes for generating motion in macroscale fluidic devices and robotics and indicates their potential utility for in vivo applications.


Subject(s)
Enzymes , Enzymes/chemistry
20.
Phytochemistry ; 218: 113932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056516

ABSTRACT

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Subject(s)
Diterpenes, Clerodane , Menispermaceae , Tinospora , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Tinospora/chemistry , Lipopolysaccharides/pharmacology , Plant Roots/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...