Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.599
Filter
1.
Opt Lett ; 49(11): 3026-3029, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824319

ABSTRACT

We investigate the dynamical blockade in a nonlinear cavity and demonstrate the connection between the correlation function g(2)(t) and system parameters in the entire nonlinear region. Utilizing the Liouville exceptional points (LEPs) and quantum dynamics, a near-perfect single-photon blockade (1PB) can be achieved. By fine-tuning system parameters to approach the second-order LEP (LEP2), we improved single-photon statistics in both weak and strong nonlinearity regimes, including a significant reduction of g(2)(t) and a pronounced increase in the single-photon occupation number. In the strong nonlinearity region, the maximum photon population may correspond to stronger antibunching effect. Simultaneously, the time window and period of blockade can be controlled by selecting detuning based on the LEP2. Furthermore, the 1PB exhibits robustness against parameter fluctuations, and this feature can be generalized to systems for implementing single-photon sources with nonharmonic energy levels.

2.
J Nephrol ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704472

ABSTRACT

The pathological features of acute and chronic kidney diseases are closely associated with cell death in glomeruli and tubules. Ferroptosis is a form of programmed cell death characterized by iron overload-induced oxidative stress. Ferroptosis has recently gained increasing attention as a pathogenic mechanism of kidney damage. Specifically, the ferroptosis signaling pathway has been found to be involved in the pathological process of acute and chronic kidney injury, potentially contributing to the development of both acute and chronic kidney diseases. This paper aims to elucidate the underlying mechanisms of ferroptosis and its role in the pathogenesis of kidney disease, highlighting its significance and proposing novel directions for its treatment.

3.
Article in English | MEDLINE | ID: mdl-38721831

ABSTRACT

STUDY DESIGN: Finite element analysis. OBJECTIVE: To investigate the biomechanical effect of four posterior fixation tcehniques on stability and adjacent segment degeneration in treating thoracolumbar burst fractures with osteoporosis. SUMMARY OF BACKGROUND DATA: In terms of stability and adjacent segment degeneration, there remains no consensus or guidelines on the optimal technique for the treatment of thoracolumbar burst fractures in patients with osteoporosis. METHODS: Images of CT scans were imported into MIMICS and further processed by Geomagic to build 3-dimensional models of the T10-L5 region. A v-shaped osteotomy was performed on the L1 vertebral body to simulate a burst fracture in the setting of osteoporosis. Subsequently, four fixation techniques were designed using SolidWorks software. Range of motion (ROM) of the global spine, ROM distribution, ROM of adjacent segment, Von Mises stress on adjacent intervertebral discs and facet joints were analyzed. RESULTS: Among the four groups, the cortical bone screw fixation (CBT) showed the highest global ROM at 1.86°, while long-segmented pedicle screw fixation (LSPS) had the lowest global ROM at 1.25°. The LSPS had the smallest percentage of ROM of fractured vertebral body to fixed segment at 75.04%, suggesting the highest stability after fixation. The maximum ROM of the adjacent segment was observed in the CBT at 1.32°, while the LSPS exhibited the smallest at 0.89°. However, the LSPS group experienced larger maximum stress on the adjacent intervertebral discs (9.60MPa) and facet joints (3.36MPa), indicating an increasing risk of adjacent segment disease. CONCLUSION: LSPS provided the greatest stability, while CBT provided the smallest amount of stability. However, the elevated stress on adjacent intervertebral discs and facet joints after LSPS fixation increased the possibility of adjacent segment degeneration. Cement-augmented pedicle screw fixation (CAS) and combined cortical bone screw and pedicle screw fixation (CBT-PS) demonstrated significant biomechanical advantages in providing moderate fixation strength while reducing stress on the intervertebral discs and facet joints.

4.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743441

ABSTRACT

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Subject(s)
Drug Carriers , Hydrogels , Insecticides , Ivermectin , Resins, Plant , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/pharmacology , Ivermectin/toxicity , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Hydrogen-Ion Concentration , Insecticides/chemistry , Insecticides/pharmacology , Resins, Plant/chemistry , Drug Carriers/chemistry , Temperature , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Drug Liberation , Moths/drug effects , Rosaceae/chemistry , Zinc/chemistry , Zinc/pharmacology , Acrylic Resins
5.
Heliyon ; 10(9): e29904, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707440

ABSTRACT

The role of human cell division cycle 73 (CDC73) in human cancers has sparked controversy; however, its significance in oesophageal cancer remains elusive. This study aimed to elucidate CDC73 expression and its biological implications in human oesophageal cancer. Our findings unveiled a notable upregulation of CDC73 in both oesophageal cancer cell lines and tissues. Importantly, elevated CDC73 levels in patients with oesophageal cancer correlated with an unfavourable prognosis. Functional investigations revealed that CDC73 knockdown effectively curtailed the proliferation and growth of oesophageal cancer cells both in vitro and in vivo. Mechanistically, RRP15 emerged as a potential downstream target of CDC73 through a screening process involving identification of the top co-expressed genes, subsequent knockdown experiments, and observation of significant inhibition of cell proliferation, with RRP15 showing the most pronounced effect. This finding was further supported by the positive correlation observed between CDC73 and RRP15 in ESCA samples analysed using the ENCORI Pan-Cancer Analysis Platform. Notably, depletion of RRP15 in CDC73-overexpressing cells led to a shift from augmented to diminished tumour growth. Collectively, our findings underscore the pivotal role of CDC73 in oesophageal cancer through the modulation of RRP15 expression, suggesting CDC73 as a potential therapeutic target for treating oesophageal cancer.

6.
Oncol Lett ; 27(6): 284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736739

ABSTRACT

Colorectal cancer is a significant health challenge globally, with its prognosis associated with the profile of molecular biomarkers. Recently, the role of iron death-associated long non-coding (lnc)RNAs in cancer development has garnered attention; however, their expression patterns and prognostic value in colorectal cancer remain poorly elucidated. The present study aimed to assess the expression levels of iron death-related lncRNAs in colorectal cancer tissues and evaluate their relationship with patient outcomes through a comprehensive meta-analysis. Systematic searches were performed across multiple databases, including PubMed, Embase, Web of Science, Cochrane Library, CNKI, Wanfang and VIP databases, to identify studies relevant to the objective of the present study. Selected studies met predetermined inclusion criteria, from which data were extracted. R software version 4.3.1 was used for the meta-analysis, evaluating the association between iron death-related lncRNAs expression and colorectal cancer prognosis. Publication bias was assessed using funnel plot analysis, and Begg's and Egger's test. A total of 11 studies, including 3,984 patients with colorectal cancer, were included in the present meta-analysis. The results demonstrated a significant association between iron death-related lncRNAs and tumor stage classification [odds ratio (OR)=2.00; 95% confidence interval (CI), 1.77-2.24]. Notably, a significant association was also revealed between iron death-related lncRNAs and T stage classification in colorectal cancer (OR=1.82; 95% CI, 1.50-2.20). Furthermore, a statistically significant association was demonstrated between iron death-related lncRNAs and lymph node metastasis in colorectal cancer (OR=1.31; 95% CI, 1.03-1.66). The findings also highlighted a significant association between iron death-associated lncRNA and distant metastasis in colon cancer (OR=2.04; 95% CI, 1.62-2.56). Moreover, a significant association between iron death-related lncRNAs and risk score in colorectal cancer was revealed (OR=1.75; 95% CI, 1.25-2.46). In conclusion, the findings of the present meta-analysis underscore the potential of high ferroptosis-associated lncRNA expression as an indicator of adverse outcomes in colorectal cancer, suggesting their viability as biomarkers for cancer progression and prognosis. This insight opens potential new avenues for clinical application and further research into colorectal cancer management.

7.
Article in English | MEDLINE | ID: mdl-38739512

ABSTRACT

Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a subgroup of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on single-task, multi-task and zero-shot benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code is available at https://github.com/liushunyu/OPT.

8.
Mol Psychiatry ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755244

ABSTRACT

Pre-existing psychiatric disorders were linked to an increased susceptibility to COVID-19 during the initial outbreak of the pandemic, while evidence during Omicron prevalence is lacking. Leveraging data from two prospective cohorts in China, we identified incident Omicron infections between January 2023 and April 2023. Participants with a self-reported history or self-rated symptoms of depression or anxiety before the Omicron pandemic were considered the exposed group, whereas the others were considered unexposed. We employed multivariate logistic regression models to examine the association of pre-existing depression or anxiety with the risk of any or severe Omicron infection indexed by medical interventions or severe symptoms. Further, we stratified the analyses by polygenic risk scores (PRSs) for COVID-19 and repeated the analyses using the UK Biobank data. We included 10,802 individuals from the Chinese cohorts (mean age = 51.1 years, 45.6% male), among whom 7841 (72.6%) were identified as cases of Omicron infection. No association was found between any pre-existing depression or anxiety and the overall risk of Omicron infection (odds ratio [OR] =1.04, 95% confidence interval [CI] 0.95-1.14). However, positive associations were noted for severe Omicron infection, either as infections requiring medical interventions (1.26, 1.02-1.54) or with severe symptoms (≥3: 1.73, 1.51-1.97). We obtained comparable estimates when stratified by COVID-19 PRS level. Additionally, using clustering method, we identified eight distinct symptom patterns and found associations between pre-existing depression or anxiety and the patterns characterized by multiple or complex severe symptoms including cough and taste and smell decline (ORs = 1.42-2.35). The results of the UK Biobank analyses corroborated findings of the Chinese cohorts. In conclusion, pre-existing depression and anxiety was not associated with the risk of Omicron infection overall but an elevated risk of severe Omicron infection, supporting the continued efforts on monitoring and possible early intervention in this high-risk population during Omicron prevalence.

9.
ACS Sens ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759108

ABSTRACT

Flexible self-powered tactile sensors, with applications spanning wearable electronics, human-machine interaction, prosthetics, and soft robotics, offer real-time feedback on tactile interactions in diverse environments. Despite advances in their structural development, challenges persist in sensitivity and robustness, particularly when additional functionalities, such as high transparency and stretchability. In this study, we present a novel approach integrating a bionic fingerprint ring structure with a PVDF-HFP/AgNWs composite fiber electrode membrane, fabricated via 3D printing technology and electrospinning, respectively, yielding a triboelectric nanogenerator (TENG)-based self-powered tactile sensor. The sensor demonstrates high sensitivity (5.84 V/kPa in the 0-10 kPa range) and rapid response time (10 ms), attributed to the microring texture on its surface, and exhibits exceptional robustness, maintaining electrical output integrity even after 24,000 cycles of loading. These findings highlight the potential of the microring structures in addressing critical challenges in flexible sensor technology.

10.
ACS Appl Mater Interfaces ; 16(19): 24421-24430, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690964

ABSTRACT

Periprosthetic infections caused by Staphylococcus aureus (S. aureus) pose unique challenges in orthopedic surgeries, in part due to the bacterium's capacity to invade surrounding bone tissues besides forming recalcitrant biofilms on implant surfaces. We previously developed prophylactic implant coatings for the on-demand release of vancomycin, triggered by the cleavage of an oligonucleotide (Oligo) linker by micrococcal nuclease (MN) secreted by the Gram-positive bacterium, to eradicate S. aureus surrounding the implant in vitro and in vivo. Building upon this coating platform, here we explore the feasibility of extending the on-demand release to ampicillin, a broad-spectrum aminopenicillin ß-lactam antibiotic that is more effective than vancomycin in killing Gram-negative bacteria that may accompany S. aureus infections. The amino group of ampicillin was successfully conjugated to the carboxyl end of an MN-sensitive Oligo covalently integrated in a polymethacrylate hydrogel coating applied to titanium alloy pins. The resultant Oligo-Ampicillin hydrogel coating released the ß-lactam in the presence of S. aureus and successfully cleared nearby S. aureus in vitro. When the Oligo-Ampicillin-coated pin was delivered to a rat femoral canal inoculated with 1000 cfu S. aureus, it prevented periprosthetic infection with timely on-demand drug release. The clearance of the bacteria from the pin surface as well as surrounding tissue persisted over 3 months, with no local or systemic toxicity observed with the coating. The negatively charged Oligo fragment attached to ampicillin upon cleavage from the coating did diminish the antibiotic's potency against S. aureus and Escherichia coli (E. coli) to varying degrees, likely due to electrostatic repulsion by the anionic surfaces of the bacteria. Although the on-demand release of the ß-lactam led to adequate killing of S. aureus but not E. coli in the presence of a mixture of the bacteria, strong inhibition of the colonization of the remaining E. coli on hydrogel coating was observed. These findings will inspire considerations of alternative broad-spectrum antibiotics, optimized drug conjugation, and Oligo linker engineering for more effective protection against polymicrobial periprosthetic infections.


Subject(s)
Ampicillin , Anti-Bacterial Agents , Coated Materials, Biocompatible , Prosthesis-Related Infections , Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcus aureus/drug effects , Ampicillin/chemistry , Ampicillin/pharmacology , Rats , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/drug therapy , Prosthesis-Related Infections/prevention & control , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Rats, Sprague-Dawley , Microbial Sensitivity Tests , Drug Liberation , Prostheses and Implants
11.
ERJ Open Res ; 10(3)2024 May.
Article in English | MEDLINE | ID: mdl-38770009

ABSTRACT

Background: In China, the prevalence of severe asthma with eosinophilic phenotype is rising, yet treatment options are limited. Mepolizumab is the first targeted biologic therapy for eosinophilic-driven disease in China. This study (clinicaltrials.gov identifier NCT03562195) evaluated efficacy and safety of mepolizumab in Chinese patients with severe asthma. Methods: The phase III, multicentre, randomised, placebo-controlled, double-blind, parallel-group study enrolled patients aged ≥12 years with severe asthma, with two or more exacerbations in the previous year, and on inhaled corticosteroids plus at least one controller medication. Following a 1-4-week run-in, patients were randomised 1:1 to mepolizumab 100 mg or placebo subcutaneously every 4 weeks for 52 weeks. The primary end-point was annualised rate of clinically significant exacerbations (CSEs) through week 52. Secondary end-points were time to first CSE, frequency of CSEs requiring hospitalisation/emergency department visits or hospitalisation over 52 weeks, mean change in St George's Respiratory Questionnaire (SGRQ) total score and pre-bronchodilator forced expiratory volume in 1 s (FEV1) at week 52; safety was evaluated. Results: The modified intention-to-treat population included 300 patients. At week 52 with mepolizumab versus placebo, annualised rate of CSEs was 65% lower (0.45 versus 1.31 events per year; rate ratio 0.35, 95% CI 0.24-0.50; p<0.001); time to first CSE longer (hazard ratio 0.38, 95% CI 0.26-0.56; p<0.001) and number of CSEs requiring hospitalisation/emergency department visit lower (rate ratio 0.30, 95% CI 0.12-0.77; p=0.012). From baseline to week 52, SGRQ score improved (p=0.001) and pre-bronchodilator FEV1 increased (p=0.006). Incidence of adverse events was similar between treatment groups. Conclusion: Mepolizumab provided clinical benefits to patients with severe asthma in China and showed a favourable benefit-risk profile.

12.
Sensors (Basel) ; 24(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38733013

ABSTRACT

During the operation of space gravitational wave detectors, the constellation configuration formed by three satellites gradually deviates from the ideal 60° angle due to the periodic variations in orbits. To ensure the stability of inter-satellite laser links, active compensation of the breathing angle variation within the constellation plane is achieved by rotating the optical subassembly through the telescope pointing mechanism. This paper proposes a high-performance robust composite control method designed to enhance the robust stability, disturbance rejection, and tracking performance of the telescope pointing system. Specifically, based on the dynamic model of the telescope pointing mechanism and the disturbance noise model, an H∞ controller has been designed to ensure system stability and disturbance rejection capabilities. Meanwhile, employing the method of an H∞ norm optimized disturbance observer (HODOB) enhances the nonlinear friction rejection ability of the telescope pointing system. The simulation results indicate that, compared to the traditional disturbance observer (DOB) design, utilizing the HODOB method can enhance the tracking accuracy and pointing stability of the telescope pointing system by an order of magnitude. Furthermore, the proposed composite control method improves the overall system performance, ensuring that the stability of the telescope pointing system meets the 10 nrad/Hz1/2 @0.1 mHz~1 Hz requirement specified for the TianQin mission.

14.
Int J Mol Med ; 53(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38695243

ABSTRACT

Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low­dose radiation­sensitive markers. The HuT 78 and IM­9 cell lines were irradiated in a concentration­dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration­dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub­lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub­lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML­277, pifithrin­α, and nutlin­3a were evaluated for their ability to modulate radiation­induced cell death. The use of BML­277 led to a decrease in radiation­induced p­CHK2 and γH2AX levels and mitigated radiation­induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation­sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Damage , Radiation, Ionizing , Signal Transduction , DNA Damage/radiation effects , DNA Damage/drug effects , Humans , Animals , Signal Transduction/drug effects , Signal Transduction/radiation effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Mice , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , Histones/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Male , Imidazoles/pharmacology , Radiation-Protective Agents/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Radiation
15.
Anticancer Res ; 44(6): 2577-2585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821598

ABSTRACT

BACKGROUND/AIM: Nuclear factor erythroid-derived 2-related factor-2 (NRF2) is a transcription factor that regulates stress response genes. It negatively regulates the immune system by acting as a transcriptional repressor of inflammatory genes or suppressing type I interferon (IFN) production pathways. NRF2 is often over-expressed in some tumors, including non-small cell lung cancer, and modulates these tumors via an immune-cold microenvironment. Thus, strategies to convert cold tumors into hot tumors are effective for cancer treatment. MATERIALS AND METHODS: NRF2 was knocked-down or over-expressed in human cancer cells (A549, HeLa, H1299, H1650) and mouse mammary adenocarcinoma TS/A cells. Cells were irradiated or transfected with poly(I:C), and changes in type I IFN levels were examined using quantitative real-time polymerase chain reaction and western blotting. Cytosolic DNA was assayed via PicoGreen staining and immune and cancer cells were co-cultured. RESULTS: Regulation of NRF2 expression altered type I IFN levels in the human lung cancer cell line A549 and several solid tumors. Down-regulation of NRF2 resulted in increased levels of cytosolic DNA and activated the cGAS-STING pathway. We confirmed that type I IFN was induced in NRF2-down-regulated tumor cells using ionizing radiation (IR). Furthermore, when dendritic cells and macrophages were co-cultured with IR-exposed NRF2 knockdown tumor cells, the immune cells produced more IFNB1 and CXCL10. CONCLUSION: The immunosuppressive tumor cell environment is improved by NRF2 down-regulation, and IR treatment may promote immune cell signaling activation.


Subject(s)
Interferon Type I , NF-E2-Related Factor 2 , Radiation, Ionizing , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Interferon Type I/metabolism , Animals , Mice , Cell Line, Tumor , A549 Cells , Lung Neoplasms/radiotherapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Tumor Microenvironment/immunology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Macrophages/immunology , Macrophages/metabolism
16.
Virus Res ; 345: 199386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705479

ABSTRACT

Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Virus Replication , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Cytokines/metabolism , Cytokines/genetics , Inflammation/virology , Enterovirus/physiology , Enterovirus/pathogenicity , Cell Line, Tumor , Inflammasomes/metabolism , Enterovirus A, Human/physiology , Enterovirus A, Human/pathogenicity , Cell Survival
17.
Int J Biol Macromol ; 270(Pt 1): 132120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740153

ABSTRACT

A novel composite hydrogel was synthesized via Schiff base reaction between chitosan and di-functional poly(ethylene glycol) (DF-PEG), incorporating glucose oxidase (GOx) and cobalt metal-organic frameworks (Co-MOF). The resulting CS/PEG/GOx@Co-MOF composite hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). The results confirmed successful integration and uniform distribution of Co-MOF within the hydrogel matrix. Functionally, the hydrogel exploits the catalytic decomposition of glucose by GOx to generate gluconic acid and hydrogen peroxide (H2O2), while Co-MOF gradually releases metal ions and protects GOx. This synergy enhanced the antibacterial activity of the composite hydrogel against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli), outperforming conventional chitosan-based hydrogels. The potential of the composite hydrogel in treating wound infections was evaluated through antibacterial and wound healing experiments. Overall, CS/PEG/GOx@Co-MOF hydrogel holds great promise for the treatment of wound infections, paving the way for further research and potential clinical applications.


Subject(s)
Anti-Bacterial Agents , Chitosan , Escherichia coli , Hydrogels , Metal-Organic Frameworks , Staphylococcus aureus , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Glucose Oxidase/chemistry , Animals , Cobalt/chemistry , Polyethylene Glycols/chemistry , Microbial Sensitivity Tests
18.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Subject(s)
Myeloid-Derived Suppressor Cells , Reishi , Spores, Fungal , Triple Negative Breast Neoplasms , Tumor Microenvironment , beta-Glucans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , beta-Glucans/pharmacology , beta-Glucans/chemistry , Reishi/chemistry , Female , Tumor Microenvironment/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lectins, C-Type
19.
Biomed Pharmacother ; 175: 116780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781864

ABSTRACT

Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metabolomics , Pueraria , Rats, Sprague-Dawley , Animals , Pueraria/chemistry , Male , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Liver/metabolism , Liver/drug effects , Administration, Oral , Plant Extracts/pharmacology , Isoflavones/pharmacology , Insulin/blood , Insulin/metabolism , Lipids/blood
20.
Sci Total Environ ; 935: 173343, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38777069

ABSTRACT

Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha permanent plots distributed in subtropical forests on the eastern and western aspects of the Gaoligong Mountains, southwest China between 1498 m and 3204 m a.sl. to evaluate how niche-based and biogeographic processes shape tree community assembly along elevational gradients. We analyzed the elevational patterns of taxonomic, phylogenetic and functional diversity, as well as of individual traits, and assessed the relative importance of environmental effects on these diversity measures. We then classified tree species as being either tropical affiliated or temperate affiliated and estimated their contribution to the composition of biogeographic affinities. Species richness decreased with elevation, and species composition showed apparent turnover across the aspects and elevations. Most traits exhibited convergent patterns across the entire elevational gradient. Phylogenetic and functional diversity showed opposing patterns, with phylogenetic diversity increasing and functional diversity decreasing with elevation. Soil nutrients, especially phosphorus and nitrogen, appeared to be the main abiotic variables driving the elevational diversity patterns. Communities at lower elevations were occupied by tropical genera, while highlands contained species of tropical and temperate biogeographic affinities. Moreover, the high phylogenetic diversity at high elevations were likely due to differences in evolutionary history between temperate and tropical species. Our results highlight the importance of niche convergence of tropical species and the legacy of biogeographic history on the composition and structure of subtropical mountain forests. Furthermore, limited soil phosphorus caused traits divergence and the partitioning for different forms of phosphorus may explain the high biodiversity found in phosphorus-limited subtropical forests.

SELECTION OF CITATIONS
SEARCH DETAIL
...