Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 175: 116780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781864

ABSTRACT

Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metabolomics , Pueraria , Rats, Sprague-Dawley , Animals , Pueraria/chemistry , Male , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Liver/metabolism , Liver/drug effects , Administration, Oral , Plant Extracts/pharmacology , Isoflavones/pharmacology , Insulin/blood , Insulin/metabolism , Lipids/blood
2.
Am J Transl Res ; 15(1): 47-62, 2023.
Article in English | MEDLINE | ID: mdl-36777850

ABSTRACT

OBJECTIVE: Timely and precise etiology diagnosis is crucial for optimized medication regimens and better prognosis in central nervous system infections (CNS infections). We aimed to analyze the impact of mNGS tests on the management of patients with CNS infections. METHODS: We conducted a single-center retrospective cohort study to analyze the value of mNGS in clinical applications. Three hundred sixty-nine patients with a CNS infection diagnosis were enrolled, and their clinical data were collected. CDI and DDI were defined in our study to describe the intensity of drug use in different groups. We used LOH and mRS to evaluate if the application of mNGS can benefit CNS infected patients. RESULTS: mNGS reported a 91.67% sensitivity in culture-positive patients and an 88.24% specificity compared with the final diagnoses. Patients who participated with the mNGS test had less drug use, both total (58.77 vs. 81.18) and daily (22.6 vs. 28.12, P < 0.1, McNemar) intensity of drug use, and length of hospitalization (23.14 vs. 24.29). Patients with a consciousness grading 1 and 3 had a decrease in CDI (Grade 1, 86.49 vs. 173.37; Grade 3, 48.18 vs. 68.21), DDI (Grade 1, 1.52 vs. 2.72; Grade 3, 2.3 vs. 2.45), and LOH (Grade 1, 32 vs. 40; Grade 3, 21 vs. 23) with the application of mNGS. Patients infected with bacteria in the CNS had a reduced CDI, DDI, and LOH in the mNGS group. This was compared with the TraE group that had 49% of patients altered medication plans, and 24.7% of patients reduced drug intensity four days after mNGS reports. This was because of the reduction of drug types. CONCLUSION: mNGS showed its high sensitivity and specificity characteristics. mNGS may assist clinicians with more rational medication regimens and reduce the drug intensity for patients. The primary way of achieving this is to reduce the variety of drugs, especially for severe patients and bacterial infections. mNGS has the ability of improving the prognosis of CNS infected patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...