Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(5): 101522, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38701781

ABSTRACT

Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.


Subject(s)
Ischemic Stroke , Microglia , Neuroinflammatory Diseases , Animals , Humans , Male , Mice , Brain Injuries/pathology , Brain Injuries/metabolism , Brain Injuries/genetics , Brain Ischemia/pathology , Brain Ischemia/metabolism , Brain Ischemia/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Ischemic Stroke/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Monocytes/metabolism , Monocytes/drug effects , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
2.
Bioorg Med Chem ; 71: 116936, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35917766

ABSTRACT

Phidianidines A and B are novel marine indole alkaloids with various biological activities. Based on their potential anti-inflammatory properties, a series of phidianidine derivatives were designed, synthesized, and tested for their effects on IL-17A production in PMA/ionomycin-stimulated T-cell-lymphoma EL-4 cells. Compounds 9a and 22c exhibited excellent anti-inflammatory activity and low toxicity, with IC50 values of 7.7 µM and 5.3 µM for IL-17A production in PMA/ionomycin-stimulated EL-4 cells, respectively. Further mechanistic study showed that 9a could decrease the STAT3 phosphorylation at Y705 to inhibit IL-17A production in EL-4 cells, indicating its ability of preventing the differentiation of Th17 cells and their possible function. This research may give an insight for the discovery of marine indole alkaloid derived anti-inflammatory drug leads for the treatment of T cell-mediated diseases.


Subject(s)
Indole Alkaloids , Interleukin-17 , Anti-Inflammatory Agents/pharmacology , Ionomycin , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...