Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2314004, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760018

ABSTRACT

Transfer printing techniques based on tunable and reversible adhesives enable the heterogeneous integration of materials in desired layouts and are essential for developing both existing and envisioned electronic systems. Here, a novel tunable and reversible adhesive of liquid metal ferrofluid pillars for developing an efficient magnetically actuated noncontact transfer printing is reported. The liquid metal ferrofluid pillars offer the appealing advantages of gentle contact force by minimizing the preload effect and exceptional shape adaptability by maximizing the interfacial contact area due to their inherent fluidity, thus enabling a reliable damage-free pickup. Moreover, the liquid metal ferrofluid pillars harness the rapid stiffness increase and shape change with the magnetic field, generating an instantaneous ejection force to achieve a receiver-independent noncontact printing. Demonstrations of the adhesive of liquid metal ferrofluid pillars in transfer printing of diverse objects with different shapes, materials and dimensions onto various substrates illustrate its great potential in deterministic assembly.

2.
Research (Wash D C) ; 7: 0367, 2024.
Article in English | MEDLINE | ID: mdl-38694204

ABSTRACT

The flexible and conformal interconnects for electronic systems as a potential signal transmission device have great prospects in body-worn or wearable applications. High-efficiency wave propagation and conformal structure deformation around human body at radio communication are still confronted with huge challenges due to the lack of methods to control the wave propagation and achieve the deformable structure simultaneously. Here, inspired by the kirigami technology, a new paradigm to construct spoof plasmonic interconnects (SPIs) that support radiofrequency (RF) surface plasmonic transmission is proposed, together with high elasticity, strong robustness, and multifunction performance. Leveraging the strong field-confinement characteristic of spoof surface plasmons polaritons, the Type-I SPI opens its high-efficiency transmission band after stretching from a simply connected metallic surface. Meanwhile, the broadband transmission of the kirigami-based SPI exhibits strong robustness and excellent stability undergoing complex deformations, i.e., bending, twisting, and stretching. In addition, the prepared Type-II SPI consisting of 2 different subunit cells can achieve band-stop transmission characteristics, with its center frequency dynamically tunable by stretching the buckled structure. Experimental measurements verify the on-off switching performance in kirigami interconnects triggered by stretching. Overcoming the mechanical limitation of rigid structure with kirigami technology, the designer SPIs exhibit high stretchability through out-of-plane structure deformation. Such kirigami-based interconnects can improve the elastic functionality of wearable RF electronics and offer high compatibility to large body motion in future body network systems.

3.
Adv Mater ; : e2401151, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558183

ABSTRACT

Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.

4.
ACS Appl Mater Interfaces ; 16(7): 9443-9452, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38335021

ABSTRACT

Switchable adhesive is essential to develop transfer printing, which is an advanced heterogeneous material integration technique for developing electronic systems. Designing a switchable adhesive with strong adhesion strength that can also be easily eliminated to enable noncontact transfer printing still remains a challenge. Here, we report a simple yet robust design of switchable adhesive based on a thermally responsive shape memory polymer with micropillars of different heights. The adhesive takes advantage of the shape-fixing property of shape memory polymer to provide strong adhesion for a reliable pick-up and the various levels of shape recovery of micropillars under laser heating to eliminate the adhesion for robust printing in a noncontact way. Systematic experimental and numerical studies reveal the adhesion switch mechanism and provide insights into the design of switchable adhesives. This switchable adhesive design provides a good solution to develop laser-driven noncontact transfer printing with the capability of eliminating the influence of receivers on the performance of transfer printing. Demonstrations of transfer printing of silicon wafers, microscale Si platelets, and micro light emitting diode (µ-LED) chips onto various challenging nonadhesive receivers (e.g., sandpaper, stainless steel bead, leaf, or glass) to form desired two-dimensional or three-dimensional layouts illustrate its great potential in deterministic assembly.

5.
Proc Natl Acad Sci U S A ; 121(5): e2318739121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38266054

ABSTRACT

Transfer printing that enables heterogeneous integration of materials into spatially organized, functional arrangements is essential for developing unconventional electronic systems. Here, we report a laser-driven noncontact bubble transfer printing via a hydrogel composite stamp, which features a circular reservoir filled with hydrogel inside a stamp body and encapsulated by a laser absorption layer and an adhesion layer. This composite structure of stamp provides a reversible thermal controlled adhesion in a rapid manner through the liquid-gas phase transition of water in the hydrogel. The ultrasoft nature of hydrogel minimizes the influence of preload on the pick-up performance, which offers a strong interfacial adhesion under a small preload for a reliable damage-free pick-up. The strong light-matter interaction at the interface induces a liquid-gas phase transition to form a bulge on the stamp surface, which eliminates the interfacial adhesion for a successful noncontact printing. Demonstrations of noncontact transfer printing of microscale Si platelets onto various challenging nonadhesive surfaces (e.g., glass, key, wrench, steel sphere, dry petal, droplet) in two-dimensional or three-dimensional layouts illustrate the unusual capabilities for deterministic assembly to develop unconventional electronic systems such as flexible inorganic electronics, curved electronics, and micro-LED display.

6.
Adv Sci (Weinh) ; 11(6): e2307693, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38152952

ABSTRACT

Flexible tactile sensors with multifunctional sensing functions have attracted much attention due to their wide applications in artificial limbs, intelligent robots, human-machine interfaces, and health monitoring devices. Here, a multifunctional flexible tactile sensor based on resistive effect for simultaneous sensing of pressure and temperature is reported. The sensor features a simple design with patterned metal film on a soft substrate with cavities and protrusions. The decoupling of pressure and temperature sensing is achieved by the reasonable arrangement of metal layers in the patterned metal film. Systematically experimental and numerical studies are carried out to reveal the multifunctional sensing mechanism and show that the proposed sensor exhibits good linearity, fast response, high stability, good mechanical flexibility, and good microfabrication compatibility. Demonstrations of the multifunctional flexible tactile sensor to monitor touch, breathing, pulse and objects grabbing/releasing in various application scenarios involving coupled temperature/pressure stimuli illustrate its excellent capability of measuring pressure and temperature simultaneously. These results offer an effective tool for multifunctional sensing of pressure and temperature and create engineering opportunities for applications of wearable health monitoring and human-machine interfaces.

7.
Org Lett ; 25(20): 3708-3712, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37184355

ABSTRACT

The decatungstate photocatalyst [W10O32]4- efficiently promoted the C(sp3)-H alkylation of the trifluoroacetic acid salt of valine methyl ester (H-Val-OMe·TFA) with electron-deficient alkenes under UV irradiation. The electrostatic interaction between the cationic ammonium group (+NH3) of the main chain and anionic [W10O32]4- played an important role in this reaction. The influence of various protected amino acids in the C(sp3)-H alkylation was investigated as the model reaction for the alkylation of Val-containing peptides. The introduction of an alkyne moiety into Val through this alkylation was successful, and successive copper-catalyzed azide-alkyne cycloaddition (CuAAC) was demonstrated. The C(sp3)-H bond of a Val residue located at the second from the N-terminus was also successfully converted. C(sp3)-H alkylation of oligopeptides containing two Val residues selectively proceeded proximally to the N-terminus.

8.
Small ; 19(29): e2205768, 2023 07.
Article in English | MEDLINE | ID: mdl-37035943

ABSTRACT

Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.


Subject(s)
Olfactory Pathways , Smell , Animals , Humans , Olfactory Pathways/physiology , Smell/physiology , Olfactory Bulb/physiology , Odorants , Perception , Mammals
9.
Research (Wash D C) ; 2022: 9787296, 2022.
Article in English | MEDLINE | ID: mdl-35677837

ABSTRACT

Thermal therapy has continued to attract the attention of researchers and clinicians due to its important applications in tumor ablation, wound management, and drug release. The lack of precise temperature control capability in traditional thermal treatment may cause the decrease of therapeutic effect and thermal damage to normal tissues. Here, we report an implantable thermal therapeutic device (ITTD), which offers precise closed loop heating, in situ temperature monitoring, and thermal protection. The ITTD features a multifunctional foldable electronics device wrapped on a heat-insulating composite pad. Experimental and numerical studies reveal the fundamental aspects of the design, fabrication, and operation of the ITTD. In vivo experiments of the ITTD in thermal ablation for antitumor demonstrate that the proposed ITTD is capable of controlling the ablation temperature precisely in real time with a precision of at least 0.7°C and providing effective thermal protection to normal tissues. This proof-of-concept research creates a promising route to develop ITTD with precise temperature control capability, which is highly desired in thermal therapy and other disease diagnosis and treatments.

10.
Neurosci Bull ; 38(1): 1-15, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34633650

ABSTRACT

Parkinson's disease (PD) is the second most common and fastest-growing neurodegenerative disorder. In recent years, it has been recognized that neurotransmitters other than dopamine and neuronal systems outside the basal ganglia are also related to PD pathogenesis. However, little is known about whether and how the caudal zona incerta (ZIc) regulates parkinsonian motor symptoms. Here, we showed that specific glutamatergic but not GABAergic ZIcVgluT2 neurons regulated these symptoms. ZIcVgluT2 neuronal activation induced time-locked parkinsonian motor symptoms. In mouse models of PD, the ZIcVgluT2 neurons were hyperactive and inhibition of their activity ameliorated the motor deficits. ZIcVgluT2 neurons monosynaptically projected to the substantia nigra pars reticulata. Incerta-nigral circuit activation induced parkinsonian motor symptoms. Together, our findings provide a direct link between the ZIc, its glutamatergic neurons, and parkinsonian motor symptoms for the first time, help to better understand the mechanisms of PD, and supply a new important potential therapeutic target for PD.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Zona Incerta , Animals , Mice , Neurons , Substantia Nigra
11.
Sci Adv ; 7(52): eabl8313, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936460

ABSTRACT

Electronic skins (e-skins) with multifunctional sensing functions have attracted a lot of attention due to their promising applications in intelligent robotics, human-machine interfaces, and wearable healthcare systems. Here, we report a multifunctional e-skin based on patterned metal films for tactile sensing of pressure and temperature with a broad linear response range by implementing the single sensing mechanism of piezoresistivity, which allows for the easy signal processing and simple device configuration. The sensing pixel features serpentine metal traces and spatially distributed microprotrusions. Experimental and numerical studies reveal the fundamental aspects of the multifunctional tactile sensing mechanism of the e-skin, which exhibits excellent flexibility and wearable conformability. The fabrication approach being compatible with the well-established microfabrication processes has enabled the scalable manufacturing of a large-scale e-skin for spatial tactile sensing in various application scenarios.

12.
Micromachines (Basel) ; 12(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34683216

ABSTRACT

Heat generation is a major issue in all electronics, as heat reduces product life, reliability, and performance, especially in flexible electronics with low thermal-conductivity polymeric substrates. In this sense, the active heat dissipation design with flow channels holds great promise. Here, a theoretical model, validated by finite element analysis and experiments, based on the method of the separation of variables, is developed to study the thermal behavior of the active heat dissipation design with an embedded flow channel. The influences of temperature and flow velocity of the fluid on heat dissipation performance were systematically investigated. The influence of channel spacing on heat dissipation performance was also studied by finite element analysis. The study shows that performance can be improved by decreasing the fluid temperature or increasing the flow velocity and channel density. These results can help guide the design of active heat dissipation with embedded flow channels to reduce adverse effects due to excessive heating, thus enhancing the performance and longevity of electronic products.

13.
Nat Commun ; 12(1): 6070, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663828

ABSTRACT

The low productivity of typical 3D printing is a major hurdle for its utilization in large-scale manufacturing. Innovative techniques have been developed to break the limitation of printing speed, however, sophisticated facilities or costly consumables are required, which still substantially restricts the economic efficiency. Here we report that a common stereolithographic 3D printing facility can achieve a very high printing speed (400 mm/h) using a green and inexpensive hydrogel as a separation interface against the cured part. In sharp contrast to other techniques, the unique separation mechanism relies on the large recoverable deformation along the thickness direction of the hydrogel interface during the layer-wise printing. The hydrogel needs to be extraordinarily soft and unusually thick to remarkably reduce the adhesion force which is a key factor for achieving rapid 3D printing. This technique shows excellent printing stability even for fabricating large continuous solid structures, which is extremely challenging for other rapid 3D printing techniques. The printing process is highly robust for fabricating diversified materials with various functions. With the advantages mentioned above, the presented technique is believed to make a large impact on large-scale manufacturing.

14.
Org Lett ; 23(11): 4327-4331, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33989009

ABSTRACT

A regioselective radical C-H trifluoromethylation of aromatic compounds was developed using cyclodextrins (CDs) as additives. The C-H trifluoromethylation proceeded with high regioselectivity to afford the product in good yield, even on the gram scale. In the presence of CDs, some substrates underwent a single trifluoromethylation selectively, whereas mixtures of single- and double-trifluoromethylated products were formed in the absence of the CD. 1H NMR experiments indicated that the regioselectivity was controlled by the inclusion of a substrate inside the CD cavity.

15.
Sci Adv ; 6(25): eabb2393, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596472

ABSTRACT

Transfer printing that enables heterogeneous integration of materials in desired layouts offers unprecedented opportunities for developing high-performance unconventional electronic systems. However, large-area integration of ultrathin and delicate functional micro-objects with high yields in a programmable fashion still remains as a great challenge. Here, we present a simple, cost-effective, yet robust transfer printing technique via a shape-conformal stamp with actively actuated surface microstructures for programmable and scalable transfer printing with high reliability and efficiency. The shape-conformal stamp features the polymeric backing and commercially available adhesive layer with embedded expandable microspheres. Upon external thermal stimuli, the embedded microspheres expand to form surface microstructures and yield weak adhesion for reliable release. Systematic experimental and computational studies reveal the fundamental aspects of the extraordinary adhesion switchability of stamp. Demonstrations of this protocol in deterministic assemblies of diverse challenging inorganic micro-objects illustrate its extraordinary capabilities in transfer printing for developing high-performance flexible inorganic electronics.

16.
Micromachines (Basel) ; 11(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283609

ABSTRACT

Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components on a soft polymer substrate have enabled many novel applications such as epidermal electronics and wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more stringent requirements on thermal management due to the sensitive nature of biological tissues to temperature. In this review, we take microscale inorganic light-emitting diodes (µ-ILEDs) as an example of functional components to summarize the recent advances on thermal management of FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological tissues. These results are very helpful to understand the underlying heat transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.

17.
Sci Adv ; 6(7): eaay5120, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110730

ABSTRACT

Grippers are widely used for the gripping, manipulation, and assembly of objects with a wide range of scales, shapes, and quantities in research, industry, and our daily lives. A simple yet universal solution is very challenging. Here, we manage to address this challenge utilizing a simple shape memory polymer (SMP) block. The embedding of objects into the SMP enables the gripping while the shape recovery upon stimulation facilitates the releasing. Systematic studies show that friction, suction, and interlocking effects dominate the grip force individually or collectively. This universal SMP gripper design provides a versatile solution to grip and manipulate multiscaled (from centimeter scale down to 10-µm scale) 3D objects with arbitrary shapes, in individual, deterministic, or massive, selective ways. These extraordinary capabilities are demonstrated by the gripping and manipulation of macroscaled objects, mesoscaled steel sphere arrays and microparticles, and the selective and patterned transfer printing of micro light-emitting diodes.

18.
J Am Chem Soc ; 142(4): 1692-1697, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31939289

ABSTRACT

In this paper, we report efficient cyanation of various peptides containing the α-bromocarbonyl moiety using a Cu-catalyzed radical-based methodology employing zinc cyanide as the cyanide source. Mechanistic studies revealed that in situ formed CuCN was a key intermediate during the catalytic cycle. Our method could be useful for the synthesis of modified peptides containing quaternary carbons.

19.
Natl Sci Rev ; 7(2): 296-304, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34692045

ABSTRACT

Transfer printing, as an important assembly technique, has attracted much attention due to its valuable merits to develop novel forms of electronics such as stretchable inorganic electronics requiring the heterogeneous integration of inorganic materials with soft elastomers. Here, we report on a laser-driven programmable non-contact transfer printing technique via a simple yet robust design of active elastomeric microstructured stamp that features cavities filled with air and embedded under the contacting surface, a micro-patterned surface membrane that encapsulates the air cavities and a metal layer on the inner-cavity surfaces serving as the laser-absorbing layer. The micro-patterned surface membrane can be inflated dynamically to control the interfacial adhesion, which can be switched from strong state to weak state by more than three orders of magnitude by local laser heating of the air in the cavity with a temperature increase below 100°C. Theoretical and experimental studies reveal the fundamental aspects of the design and fabrication of the active elastomeric microstructured stamp and the operation of non-contact transfer printing. Demonstrations in the programmable transfer printing of micro-scale silicon platelets and micro-scale LED chips onto various challenging receivers illustrate the extraordinary capabilities for deterministic assembly that are difficult to address by existing printing schemes, thereby creating engineering opportunities in areas requiring the heterogeneous integration of diverse materials such as curvilinear electronics and MicroLED displays.

20.
ACS Appl Mater Interfaces ; 11(51): 48412-48418, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31801017

ABSTRACT

Exiting strategies for 3D shape-changing structures are constrained by either the complicated fabrication process or the harsh demands of active materials. Facile preparation of 3D shape-changing structures with an extremely simple approach based on the elastomeric polymer still remains a challenging topic. Here, we report a fast digital patterning of surface topography of a single-layer elastomeric polymer toward 3D shape-changing structures. The surface topography features digitally engraved grooves by a laser engraver on a poly(dimethylsiloxane) (PDMS) sheet, which is surface oxidized by the UV-ozone treatment. The resulting engraved PDMS sheets exhibit programmable shape-changing behaviors to form various 3D structures under the action of organic solvent. Experimental and numerical studies reveal the fundamental aspects of surface topography-guided 3D shape-changing structures. Demonstrations of this concept in developing various complex 3D shape-changing structures illustrate the simplicity and effectiveness of our approach, thereby creating engineering opportunities in a wide range of applications such as actuators and soft robots.

SELECTION OF CITATIONS
SEARCH DETAIL
...