Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Circ Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989585

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease causing a fatal plaque rupture, and its key aspect is a failure to resolve inflammation. We hypothesize that macrophage-targeted near-infrared fluorescence emitting photoactivation could simultaneously assess macrophage/lipid-rich plaques in vivo and facilitate inflammation resolution. METHODS AND RESULTS: We fabricated a dectin-1-targeted photoactivatable theranostic agent through the chemical conjugation of the near-infrared fluorescence-emitting photosensitizer chlorin e6 and the dectin-1 ligand laminarin-chlorin e6. Intravascular photoactivation by a customized fiber-based diffuser after administration of laminarin-chlorin e6 effectively reduced inflammation in the targeted plaques of atherosclerotic rabbits in vivo as serially assessed by dual-modal optical coherence tomography-near-infrared fluorescence structural-molecular catheter imaging after 4 weeks. The number of apoptotic macrophages peaked at 1 day after laser irradiation and then resolved until 4 weeks. Autophagy was strongly augmented 1 hour after the light therapy, with the formation of autophagolysosomes. Laminarin-chlorin e6 photoactivation increased the terminal deoxynucleotidyl transferase dUTP nick end labeling/RAM11- and MerTK (c-Mer tyrosine kinase)-positive cells in the plaques, suggesting enhanced efferocytosis. In line with inflammation resolution, photoactivation reduced the plaque burden through fibrotic replacement via the TGF (transforming growth factor)-ß/CTGF (connective tissue growth factor) pathway. CONCLUSIONS: Optical coherence tomography-near-infrared fluorescence imaging-guided macrophage dectin-1-targetable photoactivation could induce the transition of macrophage/lipid-rich plaques into collagen-rich lesions through autophagy-mediated inflammation resolution and TGF-ß-dependent fibrotic replacement. This novel strategy offers a new opportunity for the catheter-based theranostic strategy.

2.
Int J Pharm ; 654: 123951, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38423154

ABSTRACT

Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Nanoparticles , Photochemotherapy , Porphyrins , Humans , Animals , Mice , Photochemotherapy/methods , Mannose , Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Macrophages , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Porphyrins/chemistry , Cell Line, Tumor
3.
Arterioscler Thromb Vasc Biol ; 43(7): 1295-1307, 2023 07.
Article in English | MEDLINE | ID: mdl-37199160

ABSTRACT

BACKGROUND: Autofluorescence lifetime (AFL) imaging, a robust technique that enables label-free molecular investigation of biological tissues, is being introduced into the field of cardiovascular diagnostics. However, detailed AFL characteristics of coronary arteries remain elusive and there is a lack of methodology enabling such characterization. METHODS: We developed multispectral fluorescence lifetime imaging microscopy (FLIM) based on analog-mean-delay. Freshly sectioned coronary arteries and atheromas, harvested from 5 swine models, were imaged using FLIM and stained to label lipids, macrophages, collagen, and smooth muscle cells. The components were quantitated from digitized histological images and compared with the corresponding FLIM. Multispectral AFL parameters derived from 2 different spectral bands (390 nm and 450 nm) were analyzed. RESULTS: FLIM provided a wide field-of-view, high-resolution AFL imaging of frozen sections. Principal compositions of coronary arteries, such as tunica media, tunica adventitia, elastic laminas, smooth muscle cell-enriched fibrous plaque, lipid-rich core, and foamy macrophages, were well visualized in FLIM images and were found to have each different AFL spectra. In particular, proatherogenic components including lipids and foamy macrophages exhibited significantly different AFL values compared with plaque-stabilizing collagen- or smooth muscle cell-enriched tissues (P<0.0001). Pairwise comparisons showed that each composition was distinguishable from another by the difference in multispectral AFL parameters. Pixel-level analysis based on coregistered FLIM-histology dataset showed that each component of atherosclerosis (lipids, macrophages, collagen, and smooth muscle cells) had distinct correlation pattern with AFL parameters. Random forest regressors trained with the dataset allowed automated, simultaneous visualization of the key atherosclerotic components with high accuracy (r>0.87). CONCLUSIONS: FLIM provided detailed pixel-level AFL investigation of the complex composition of coronary artery and atheroma. Our FLIM strategy enabling an automated, comprehensive visualization of multiple plaque components from unlabeled sections will be highly useful to efficiently evaluate ex vivo samples without the need for histological staining and analysis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Swine , Plaque, Atherosclerotic/pathology , Microscopy , Atherosclerosis/pathology , Collagen , Lipids/analysis
4.
J Nanobiotechnology ; 19(1): 338, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689768

ABSTRACT

BACKGROUND: Photoactivation targeting macrophages has emerged as a therapeutic strategy for atherosclerosis, but limited targetable ability of photosensitizers to the lesions hinders its applications. Moreover, the molecular mechanistic insight to its phototherapeutic effects on atheroma is still lacking. Herein, we developed a macrophage targetable near-infrared fluorescence (NIRF) emitting phototheranostic agent by conjugating dextran sulfate (DS) to chlorin e6 (Ce6) and estimated its phototherapeutic feasibility in murine atheroma. Also, the phototherapeutic mechanisms of DS-Ce6 on atherosclerosis were investigated. RESULTS: The phototheranostic agent DS-Ce6 efficiently internalized into the activated macrophages and foam cells via scavenger receptor-A (SR-A) mediated endocytosis. Customized serial optical imaging-guided photoactivation of DS-Ce6 by light illumination reduced both atheroma burden and inflammation in murine models. Immuno-fluorescence and -histochemical analyses revealed that the photoactivation of DS-Ce6 produced a prominent increase in macrophage-associated apoptotic bodies 1 week after laser irradiation and induced autophagy with Mer tyrosine-protein kinase expression as early as day 1, indicative of an enhanced efferocytosis in atheroma. CONCLUSION: Imaging-guided DS-Ce6 photoactivation was able to in vivo detect inflammatory activity in atheroma as well as to simultaneously reduce both plaque burden and inflammation by harmonic contribution of apoptosis, autophagy, and lesional efferocytosis. These results suggest that macrophage targetable phototheranostic nanoagents will be a promising theranostic strategy for high-risk atheroma.


Subject(s)
Atherosclerosis/metabolism , Foam Cells/metabolism , Photosensitizing Agents , Theranostic Nanomedicine/methods , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Endocytosis/drug effects , Infrared Rays , Male , Mice , Mice, Knockout , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Photosensitizing Agents/pharmacology , RAW 264.7 Cells
5.
Biomed Opt Express ; 12(9): 5452-5469, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692194

ABSTRACT

Optical microscopy has been widely used in biomedical research as it provides photophysical and photochemical information of the target in subcellular spatial resolution without requiring physical contact with the specimen. To obtain a deeper understanding of biological phenomena, several efforts have been expended to combine such optical imaging modalities into a single microscope system. However, the use of multiple light sources and detectors through separated beam paths renders previous systems extremely complicated or slow for in vivo imaging. Herein, we propose a novel high-speed multimodal optical microscope system that simultaneously visualizes five different microscopic contrasts, i.e., two-photon excitation, second-harmonic generation, backscattered light, near-infrared fluorescence, and fluorescence lifetime, using a single femtosecond pulsed laser. Our proposed system can visualize five modal images with a frame rate of 3.7 fps in real-time, thereby providing complementary optical information that enhances both structural and functional contrasts. This highly photon-efficient multimodal microscope system enables various properties of biological tissues to be assessed.

6.
Theranostics ; 11(18): 8874-8893, 2021.
Article in English | MEDLINE | ID: mdl-34522216

ABSTRACT

Rationale: Inflammation plays a pivotal role in the pathogenesis of the acute coronary syndrome. Detecting plaques with high inflammatory activity and specifically treating those lesions can be crucial to prevent life-threatening cardiovascular events. Methods: Here, we developed a macrophage mannose receptor (MMR)-targeted theranostic nanodrug (mannose-polyethylene glycol-glycol chitosan-deoxycholic acid-cyanine 7-lobeglitazone; MMR-Lobe-Cy) designed to identify inflammatory activity as well as to deliver peroxisome proliferator-activated gamma (PPARγ) agonist, lobeglitazone, specifically to high-risk plaques based on the high mannose receptor specificity. The MMR-Lobe-Cy was intravenously injected into balloon-injured atheromatous rabbits and serial in vivo optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural-molecular imaging was performed. Results: One week after MMR-Lobe-Cy administration, the inflammatory NIRF signals in the plaques notably decreased compared to the baseline whereas the signals in saline controls even increased over time. In accordance with in vivo imaging findings, ex vivo NIRF signals on fluorescence reflectance imaging (FRI) and plaque inflammation by immunostainings significantly decreased compared to oral lobeglitazone group or saline controls. The anti-inflammatory effect of MMR-Lobe-Cy was mediated by inhibition of TLR4/NF-κB pathway. Furthermore, acute resolution of inflammation altered the inflamed plaque into a stable phenotype with less macrophages and collagen-rich matrix. Conclusion: Macrophage targeted PPARγ activator labeled with NIRF rapidly stabilized the inflamed plaques in coronary sized artery, which could be quantitatively assessed using intravascular OCT-NIRF imaging. This novel theranostic approach provides a promising theranostic strategy for high-risk coronary plaques.


Subject(s)
Macrophages/physiology , Plaque, Atherosclerotic/diagnosis , Precision Medicine/methods , Acute Coronary Syndrome/diagnosis , Animals , Arteries/metabolism , Atherosclerosis/metabolism , Drug Delivery Systems/methods , Fluorescence , Indocyanine Green/administration & dosage , Inflammation/diagnosis , Macrophages/metabolism , Male , Mannose Receptor/metabolism , Models, Animal , Molecular Imaging/methods , Optical Imaging/methods , PPAR gamma/agonists , PPAR gamma/metabolism , Plaque, Atherosclerotic/pathology , Pyrimidines/therapeutic use , Rabbits , Spectroscopy, Near-Infrared/methods , Thiazolidinediones/therapeutic use , Tomography, Optical Coherence/methods
7.
Eur Heart J ; 42(19): 1883-1895, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33462618

ABSTRACT

AIMS: Emotional stress is associated with future cardiovascular events. However, the mechanistic linkage of brain emotional neural activity with acute plaque instability is not fully elucidated. We aimed to prospectively estimate the relationship between brain amygdalar activity (AmygA), arterial inflammation (AI), and macrophage haematopoiesis (HEMA) in acute myocardial infarction (AMI) as compared with controls. METHODS AND RESULTS: 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) imaging was performed within 45 days of the index episode in 62 patients (45 with AMI, mean 60.0 years, 84.4% male; 17 controls, mean 59.6 years, 76.4% male). In 10 patients of the AMI group, serial 18F-FDG-PET/CT imaging was performed after 6 months to estimate the temporal changes. The signals were compared using a customized 3D-rendered PET reconstruction. AmygA [target-to-background ratio (TBR), mean ± standard deviation: 0.65 ± 0.05 vs. 0.60 ± 0.05; P = 0.004], carotid AI (TBR: 2.04 ± 0.39 vs. 1.81 ± 0.25; P = 0.026), and HEMA (TBR: 2.60 ± 0.38 vs. 2.22 ± 0.28; P < 0.001) were significantly higher in AMI patients compared with controls. AmygA correlated significantly with those of the carotid artery (r = 0.350; P = 0.005), aorta (r = 0.471; P < 0.001), and bone marrow (r = 0.356; P = 0.005). Psychological stress scales (PHQ-9 and PSS-10) and AmygA assessed by PET/CT imaging correlated well (P < 0.001). Six-month after AMI, AmygA, carotid AI, and HEMA decreased to a level comparable with the controls. CONCLUSION: AmygA, AI, and HEMA were concordantly enhanced in patients with AMI, showing concurrent dynamic changes over time. These results raise the possibility that stress-associated neurobiological activity is linked with acute plaque instability via augmented macrophage activity and could be a potential therapeutic target for plaque inflammation in AMI.


Subject(s)
Fluorodeoxyglucose F18 , Plaque, Atherosclerotic , Female , Humans , Macrophages , Male , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prospective Studies , Radiopharmaceuticals
8.
9.
JACC Basic Transl Sci ; 6(12): 948-960, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024500

ABSTRACT

Coronary plaque destabilization involves alterations in microstructure and biochemical composition; however, no imaging approach allows such comprehensive characterization. Herein, the authors demonstrated a simultaneous microstructural and biochemical assessment of high-risk plaques in the coronary arteries in a beating heart using a fully integrated optical coherence tomography and fluorescence lifetime imaging (FLIm). It was found that plaque components such as lipids, macrophages, lipids+macrophages, and fibrotic tissues had unique fluorescence lifetime signatures that were distinguishable using multispectral FLIm. Because FLIm yielded massive biochemical readouts, the authors incorporated machine learning framework into FLIm, and ultimately, their approach enabled an automated, quantitative imaging of multiple key components relevant for plaque destabilization.

10.
Sci Rep ; 10(1): 9248, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514084

ABSTRACT

Micro-optical coherence tomography (µOCT) is a novel imaging approach enabling visualization of the microstructures of biological tissues at a cellular or sub-cellular level. However, it has been challenging to develop a miniaturized flexible endoscopic µOCT probe allowing helical luminal scanning. In this study, we built a flexible endoscopic µOCT probe with an outer diameter of 1.2 mm, which acquires three-dimensional images of the arterial microstructures via helical scanning with an axial and lateral resolutions of 1.83 µm and 3.38 µm in air, respectively. Furthermore, the depth of focus of the µOCT imaging probe was extended two-fold using a binary phase spatial filter. We demonstrated that the present endoscopic µOCT could image cellular level features of a rabbit artery with high-risk atheroma and a bioresorbable scaffold-implanted swine coronary artery. This highly-translatable endoscopic µOCT will be a useful tool for investigating coronary artery disease and stent biology.


Subject(s)
Arteries/diagnostic imaging , Coronary Vessels/diagnostic imaging , Endoscopy , Mechanical Phenomena , Microtechnology/methods , Tomography, Optical Coherence/methods , Animals , Arteries/cytology , Calcinosis/complications , Coronary Vessels/cytology , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Rabbits , Risk , Swine
11.
Sci Rep ; 8(1): 14561, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30267024

ABSTRACT

Comprehensive imaging of both the structural and biochemical characteristics of atherosclerotic plaque is essential for the diagnosis and study of coronary artery disease because both a plaque's morphology and its biochemical composition affect the level of risk it poses. Optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIm) are promising optical imaging methods for characterizing coronary artery plaques morphologically and biochemically, respectively. In this study, we present a hybrid intravascular imaging device, including a custom-built OCT/FLIm system, a hybrid optical rotary joint, and an imaging catheter, to visualize the structure and biochemical composition of the plaque in an atherosclerotic rabbit artery in vivo. Especially, the autofluorescence lifetime of the endogenous tissue molecules can be used to characterize the biochemical composition; thus no exogenous contrast agent is required. Also, the physical properties of the imaging catheter and the imaging procedures are similar to those already used clinically, facilitating rapid translation into clinical use. This new intravascular imaging catheter can open up new opportunities for clinicians and researchers to investigate and diagnose coronary artery disease by simultaneously providing tissue microstructure and biochemical composition data in vivo without the use of exogenous contrast agent.


Subject(s)
Aorta/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Animals , Catheters , Equipment Design , Multimodal Imaging/instrumentation , Optical Imaging/instrumentation , Rabbits , Tomography, Optical Coherence/instrumentation
12.
Biomed Opt Express ; 9(4): 1930-1947, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29675330

ABSTRACT

The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement.

14.
Theranostics ; 8(1): 45-60, 2018.
Article in English | MEDLINE | ID: mdl-29290792

ABSTRACT

Rationale: Atherosclerotic plaque is a chronic inflammatory disorder involving lipid accumulation within arterial walls. In particular, macrophages mediate plaque progression and rupture. While PPARγ agonist is known to have favorable pleiotropic effects on atherogenesis, its clinical application has been very limited due to undesirable systemic effects. We hypothesized that the specific delivery of a PPARγ agonist to inflamed plaques could reduce plaque burden and inflammation without systemic adverse effects. Methods: Herein, we newly developed a macrophage mannose receptor (MMR)-targeted biocompatible nanocarrier loaded with lobeglitazone (MMR-Lobe), which is able to specifically activate PPARγ pathways within inflamed high-risk plaques, and investigated its anti-atherogenic and anti-inflammatory effects both in in vitro and in vivo experiments. Results: MMR-Lobe had a high affinity to macrophage foam cells, and it could efficiently promote cholesterol efflux via LXRα-, ABCA1, and ABCG1 dependent pathways, and inhibit plaque protease expression. Using in vivo serial optical imaging of carotid artery, MMR-Lobe markedly reduced both plaque burden and inflammation in atherogenic mice without undesirable systemic effects. Comprehensive analysis of en face aorta by ex vivo imaging and immunostaining well corroborated the in vivo findings. Conclusion: MMR-Lobe was able to activate PPARγ pathways within high-risk plaques and effectively reduce both plaque burden and inflammation. This novel targetable PPARγ activation in macrophages could be a promising therapeutic strategy for high-risk plaques.


Subject(s)
PPAR gamma/metabolism , Animals , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Optical Imaging , PPAR gamma/agonists , Plaque, Atherosclerotic/drug therapy , Pyrimidines/therapeutic use , RAW 264.7 Cells , Signal Transduction/drug effects , Thiazolidinediones/therapeutic use
15.
Opt Lett ; 42(3): 379-382, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146481

ABSTRACT

Micro-optical coherence tomography (µOCT) is an advanced imaging technique that acquires a three-dimensional microstructure of biological samples with a high spatial resolution, up to 1 µm, by using a broadband light source and a high numerical aperture (NA) lens. As high NA produces a short depth of focus (DOF), extending the DOF is necessary to obtain a reasonable imaging depth. However, due to the complexity of optics and the limited space, it has been challenging to fabricate endoscopic µOCT, which is essential for clinical translation. Here, we report an endoscopic µOCT probe with an extended DOF by using a binary phase spatial filter. The imaging results from latex beads demonstrated that the µOCT probe achieved an axial resolution of 2.49 µm and a lateral resolution of 2.59 µm with a DOF extended by a factor of 2. The feasibility of clinical use was demonstrated by ex vivo imaging of the rabbit iliac artery.


Subject(s)
Endoscopy/instrumentation , Microtechnology/instrumentation , Tomography, Optical Coherence/instrumentation , Animals , Equipment Design , Iliac Artery/diagnostic imaging , Rabbits
16.
Biomed Opt Express ; 7(12): 4847-4858, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-28018710

ABSTRACT

While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries in vivo, imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall of a swine in vivo and fine structure of the implanted stent.

17.
J Biomed Opt ; 21(7): 75004, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27391375

ABSTRACT

Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.


Subject(s)
Algorithms , Atherosclerosis/diagnostic imaging , Coronary Vessels/diagnostic imaging , Lipids/chemistry , Plaque, Atherosclerotic/diagnostic imaging , Tomography, Optical Coherence , Animals , Coronary Artery Disease/diagnostic imaging , Disease Models, Animal , Rabbits , Reproducibility of Results
19.
Med Phys ; 43(4): 1662, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27036565

ABSTRACT

PURPOSE: Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the microstructure of arterial walls in vivo. IV-OCT enables the clinician to clearly observe and accurately measure stent apposition and neointimal coverage of coronary stents, which are associated with side effects such as in-stent thrombosis. In this study, the authors present an algorithm for quantifying stent apposition and neointimal coverage by automatically detecting lumen contours and stent struts in IV-OCT images. METHODS: The algorithm utilizes OCT intensity images and their first and second gradient images along the axial direction to detect lumen contours and stent strut candidates. These stent strut candidates are classified into true and false stent struts based on their features, using an artificial neural network with one hidden layer and ten nodes. After segmentation, either the protrusion distance (PD) or neointimal thickness (NT) for each strut is measured automatically. In randomly selected image sets covering a large variety of clinical scenarios, the results of the algorithm were compared to those of manual segmentation by IV-OCT readers. RESULTS: Stent strut detection showed a 96.5% positive predictive value and a 92.9% true positive rate. In addition, case-by-case validation also showed comparable accuracy for most cases. High correlation coefficients (R > 0.99) were observed for PD and NT between the algorithmic and the manual results, showing little bias (0.20 and 0.46 µm, respectively) and a narrow range of limits of agreement (36 and 54 µm, respectively). In addition, the algorithm worked well in various clinical scenarios and even in cases with a low level of stent malapposition and neointimal coverage. CONCLUSIONS: The presented automatic algorithm enables robust and fast detection of lumen contours and stent struts and provides quantitative measurements of PD and NT. In addition, the algorithm was validated using various clinical cases to demonstrate its reliability. Therefore, this technique can be effectively utilized for clinical trials on stent-related side effects, including in-stent thrombosis and in-stent restenosis.


Subject(s)
Coronary Vessels/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neointima/diagnostic imaging , Stents , Tomography, Optical Coherence , Automation , Humans , Neural Networks, Computer , Time Factors , User-Computer Interface
20.
Sci Rep ; 6: 22608, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26948523

ABSTRACT

Macrophages mediate atheroma expansion and disruption, and denote high-risk arterial plaques. Therefore, they are substantially gaining importance as a diagnostic imaging target for the detection of rupture-prone plaques. Here, we developed an injectable near-infrared fluorescence (NIRF) probe by chemically conjugating thiolated glycol chitosan with cholesteryl chloroformate, NIRF dye (cyanine 5.5 or 7), and maleimide-polyethylene glycol-mannose as mannose receptor binding ligands to specifically target a subset of macrophages abundant in high-risk plaques. This probe showed high affinity to mannose receptors, low toxicity, and allowed the direct visualization of plaque macrophages in murine carotid atheroma. After the scale-up of the MMR-NIRF probe, the administration of the probe facilitated in vivo intravascular imaging of plaque inflammation in coronary-sized vessels of atheromatous rabbits using a custom-built dual-modal optical coherence tomography (OCT)-NIRF catheter-based imaging system. This novel imaging approach represents a potential imaging strategy enabling the identification of high-risk plaques in vivo and holds promise for future clinical implications.


Subject(s)
Atherosclerosis/diagnostic imaging , Lectins, C-Type/analysis , Macrophages/metabolism , Mannose-Binding Lectins/analysis , Optical Imaging/methods , Receptors, Cell Surface/analysis , Animals , Male , Mannose Receptor , Mice, Inbred C57BL , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...