Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4633, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532695

ABSTRACT

Pick-and-place is essential in diverse robotic applications for industries including manufacturing, and assembly. Soft grippers offer a cost-effective, and low-maintenance alternative for secure object grasping without complex sensing and control systems. However, their inherent softness normally limits payload capabilities and robustness to external disturbances, constraining their applications and hindering reliable performance. In this study, we propose a weaving-inspired grasping mechanism that substantially increases payload capacity while maintaining the use of soft and flexible materials. Drawing from weaving principles, we designed a flexible continuum structure featuring multiple closed-loop strips and employing a kirigami-inspired approach to enable the instantaneous and reversible creation of a woven configuration. The mechanical stability of the woven configuration offers exceptional loading capacity, while the softness of the gripper material ensures safe and adaptive interactions with objects. Experimental results show that the 130 g·f gripper can support up to 100 kg·f. Outperforming competitors in similar weight and softness domains, this breakthrough, enabled by the weaving principle, will broaden the scope of gripper applications to previously inaccessible or barely accessible fields, such as agriculture and logistics.

2.
Article in English | MEDLINE | ID: mdl-32140460

ABSTRACT

As soft robots have been popular, interest in soft actuators is also increasing. In particular, new types of actuators have been proposed through biomimetics. An actuator that we proposed in this study was inspired by a motor cell that enables plants to move. This actuator is an electrostatic actuator utilizing electrostatic attraction and elastic force, and can be used repeatedly. In addition, this actuator, which can produce large and diverse movements by collecting individual movements like a cell, has a wide application field. As one of them, this actuator is stacked to construct a layer structure and propose an application example. In addition, a piezo sensor was built inside the actuator and real-time motion monitoring was attempted. As a result, the point laser sensor value and the piezo sensor value coincided with each other, which means that it is possible to detect motion in real-time with the built-in sensor.

3.
Sci Rep ; 9(1): 8988, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320674

ABSTRACT

The desire to directly touch and experience virtual objects led to the development of a tactile feedback device. In this paper, a novel soft pneumatic actuator for providing tactile feedback is proposed and demonstrated. The suggested pneumatic actuator does not use an external air compressor but it is operated by internal air pressure generated by an electrostatic force. By using the actuator, we designed a glove to interact with virtual reality. The finger motions are detected by attached flexible piezoelectric sensors and transmitted to a virtual space through Bluetooth for interconnecting with a virtual hand. When the virtual finger touches the virtual object, the actuators are activated and give the tactile feedback to the real fingertip. The glove is made of silicone rubber material and integrated with the sensors and actuators such that users can wear them conveniently with light weight. This device was tested in a virtual chess board program, wherein the user picked up virtual chess pieces successfully.

4.
PLoS One ; 13(9): e0204700, 2018.
Article in English | MEDLINE | ID: mdl-30235353

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0169856.].

5.
Materials (Basel) ; 11(5)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738466

ABSTRACT

In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators.

6.
PLoS One ; 12(1): e0169856, 2017.
Article in English | MEDLINE | ID: mdl-28068391

ABSTRACT

Stimuli-sensitive hydrogels have been intensively studied because of their potential applications in drug delivery, cell culture, and actuator design. Although hydrogels with directed unidirectional response, i.e. capable of bending actuated by different chemical components reaction in response to several stimuli including water and electric fields, these hydrogels are capable of being actuated in one direction only by the stimulus. By contrast the challenge of building a device that is capable of responding to the same cue (in this case a temperature gradient) to bend in either direction remains unmet. Here, inspired by the structure of pine cone scales, we design a temperature-sensitive hydrogel with bending directed an imposed fishing line. The layers with same PNIPAAm always shrinks in response to the heat. Even the layers made with different chemical property, bends away from a warm surface, whether the warm surface is applied at its upper or lower boundary. To design the bending hydrogel we exploited the coupled responses of the hydrogel; a fishing line intercalating structure and change its construction. In addition to revealing a new capability of stimulus sensitive hydrogels, our study gives insight into the structural features of pine cone bending.


Subject(s)
Hydrogels/chemistry , Algorithms , Biocompatible Materials/chemistry , Elastic Modulus , Heating , Materials Testing , Models, Theoretical , Pinus/chemistry , Tensile Strength
7.
Front Life Sci ; 10(1): 38-47, 2017.
Article in English | MEDLINE | ID: mdl-29732239

ABSTRACT

One of the primary purposes of pine cones is the protection and distant dispersal of pine seeds. Pine cones open and release their embedded seeds on dry and windy days for long-distance dispersal. In this study, how the pine seed attach to/ detach from the pine cone scale for efficient seed dispersal were experimentally investigated by using X-ray micro-imaging technique. The cone and seeds adhere to one another in the presence of water, which could be explained by the surface tension and the contact angle hysteresis. Otherwise, without water, the waterproof seed wing surface permits rapid drying for detach and dispersion. On the other hand, during wildfires, pine cones open their seed racks and detach the pine seeds from pine cones for rapid seed dispersal. Due to these structural advantages, pine seeds are released safely and efficiently on adjust condition. These advantageous structure could be mimicked in practical applications.

8.
Sci Rep ; 5: 9963, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25944117

ABSTRACT

Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system.


Subject(s)
Fruit/anatomy & histology , Fruit/chemistry , Pinus/anatomy & histology , Pinus/chemistry , Seed Dispersal , Water/chemistry , Motion
9.
Sci Rep ; 4: 6466, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25253083

ABSTRACT

Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. M. pudica does not perform merely simple movements, but exhibits a variety of movements that quickly change depending on the type of stimuli. Previous studies have investigated the motile mechanism of the plants from a biochemical perspective. However, an interdisciplinary study on the structural characteristics of M. pudica should be accompanied by biophysical research to explain the principles underlying such movements. In this study, the structural characteristics and seismonastic reactions of M. pudica were experimentally investigated using advanced bio-imaging techniques. The results show that the key factors for the flexible movements by the pulvinus are the following: bendable xylem bundle, expandable/shrinkable epidermis, tiny wrinkles for surface modification, and a xylem vessel network for efficient water transport. This study provides new insight for better understanding the M. pudica motile mechanism through structural modification.


Subject(s)
Mimosa/ultrastructure , Molecular Imaging , Pulvinus/ultrastructure , Epidermis/growth & development , Epidermis/ultrastructure , Mimosa/anatomy & histology , Mimosa/growth & development , Movement/physiology , Pulvinus/growth & development , Xylem/physiology
10.
Microsc Res Tech ; 76(11): 1204-12, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24030786

ABSTRACT

Mimosa pudica has three distinct specialized organs, namely, pulvinus, secondary pulvinus, and pulvinule, which are respectively controlling the movements of petioles, leaflets, and pinna in response to external stimuli. Water flow is a key factor for such movements, but detailed studies on the organization of the vascular system for water transport in these organs have not been published yet. In this study, organizations of the xylem vessels and morphological features of the pulvinus, the secondary pulvinus, and the pulvinule were experimentally investigated by X-ray computed tomography and histological technique. Results showed that the xylem vessels were circularly distributed in the specialized motile organs and reorganized into distinct vascular bundles at the extremities. The number and the total cross-sectional area of the xylem vessels were increased inside the specialized motile organs. Morphological characteristics obtained in this study provided new insight to understand the functions of the vascular networks in the dynamic movements of M. pudica.


Subject(s)
Mimosa/anatomy & histology , Pulvinus/anatomy & histology , Xylem/anatomy & histology , Animals , Histocytochemistry , Tomography, X-Ray Computed
11.
J Struct Biol ; 178(2): 108-20, 2012 May.
Article in English | MEDLINE | ID: mdl-22248454

ABSTRACT

To cope with poor quality in cryo-electron tomography images, electron-dense markers, such as colloidal goldbeads, are often used to assist image registration and analysis algorithms. However, these markers can create artifacts that occlude a specimen due to their high contrast, which can also cause failure of some image processing algorithms. One way of reducing these artifacts is to replace high contrast objects with pixel densities that blend into the surroundings in the projection domain before volume reconstruction. In this paper, we propose digital inpainting via compressed sensing (CS) as a new method to achieve this goal. We show that cryo-ET projections are sparse in the discrete cosine transform (DCT) domain, and, by finding the sparsest DCT domain decompositions given uncorrupted pixels, we can fill in the missing pixel values that are occluded by high contrast objects without discontinuities. Our method reduces visual artifacts both in projections and in tomograms better than conventional algorithms, such as polynomial interpolation and random noise inpainting.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Image Processing, Computer-Assisted/methods , Algorithms , Artifacts , Computer Simulation , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...