Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Plant Physiol Biochem ; 194: 15-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368222

ABSTRACT

Iron nanoparticles (NPs) priming is known to affect the seed germination and seedling growth in many plants. However, whether it has an important role in stimulating the growth of perennial Qinghai-Tibet Plateau plants remains unclear. In this study, the effects of seed priming with different concentrations of nFe2O3 and FeCl3 (10, 50, 100, 500, and 1000 mg L-1) on seed germination, plant growth, photosystem, antioxidant enzyme activities, root morphology, and biomass distribution of Kobresia capillifolia were evaluated under laboratory conditions. The results showed that compared with treatment materials, concentration had more significant effects on K. capillifolia development. There was no significant impact on germination rate were discovered under all treatments, but decreased the seed mildew rate at 100 mg L-1 nFe2O3. Compare with control, Fe-based priming significantly decreased root biomass. All Fe-based treatments increased rubisco activity of leaves, and significantly enhanced Pn at ranged from 10 to 100 mg L-1. Meanwhile, chlorophyll contents were decreased, the chloroplasts were swollen, and thylakoids were disorganized under all Fe treatments. Iron-based priming significantly enhanced SOD, POD, and CAT activities in Kobresia roots. In conclusion, the thick cuticle-covered seed coat of K. capillifolia postponed the penetration of FeNPs into seeds, so FeNPs priming had a weak impact on seed germination. The sustainable release of Fe ions from FeNPs and the uptake of Fe ions by roots affected the physiology, biochemistry and morphology of K. capillifolia. The findings of this study provide an in-depth understanding of how FeNPs impact the alpine meadow plant, K. capillifolia.


Subject(s)
Carex Plant , Cyperaceae , Nanoparticles , Seedlings , Iron/pharmacology , Germination , Antioxidants/pharmacology , Seeds
3.
Front Plant Sci ; 14: 1264698, 2023.
Article in English | MEDLINE | ID: mdl-38264026

ABSTRACT

Soil salinization is a common environmental problem that seriously threatens crop yield and food security, especially through its impact on seed germination. Nanoparticle priming, an emerging seed treatment method, is receiving increasing attention in improving crop yield and stress resistance. This study used alfalfa seeds as materials to explore the potential benefits of cerium oxide nanoparticle (CeO2NP) priming to promote seed germination and improve salt tolerance. CeO2NPs at concentrations up to 500 mg/L were able to significantly alleviate salt stress in alfalfa seeds (200 mM), with 50 mg/L of CeO2NP having the best effect, significantly (P< 0.05) increasing germination potential (from 4.0% to 51.3%), germination rate (from 10.0% to 62.7%), root length (from 8.3 cm to 23.1 cm), and seedling length (from 9.8 cm to 13.7 cm). Priming treatment significantly (P< 0.05) increased seed water absorption by removing seed hardness and also reducing abscisic acid and jasmonic acid contents to relieve seed dormancy. CeO2NP priming increased α-amylase activity and osmoregulatory substance level, decreased reactive oxygen species and malonaldehyde contents and relative conductivity, and increased catalase enzyme activity. Seed priming regulated carotenoid, zeatin, and plant hormone signal transduction pathways, among other metabolic pathways, while CeO2NP priming additionally promoted the enrichment of α-linolenic acid and diterpenoid hormone metabolic pathways under salt stress. In addition, CeO2NPs enhanced α-amylase activity (by 6.55%) in vitro. The optimal tested concentration (50 mg/L) of CeO2NPs was able to improve the seed vigor, enhance the activity of α-amylase, regulate the osmotic level and endogenous hormone levels, and improve the salt tolerance of alfalfa seeds. This study demonstrates the efficacy of a simple seed treatment strategy that can improve crop stress resistance, which is of great importance for reducing agricultural costs and promoting sustainable agricultural development.

4.
BMC Plant Biol ; 22(1): 323, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790925

ABSTRACT

The application of nanotechnology in agriculture can remarkably improve the cultivation and growth of crop plants. Many studies showed that nanoparticles (NPs) made plants grow more vigorously. Light can make NPs aggregated, leading to the reduction of the NPs toxicity. In addition, treatment with NPs had a "hormesis effect" on plants. In this study, light-induced silver nanoparticles (AgNPs) were synthesized by using the alfalfa (Medicago sativa L.) extracts, and then the optimal synthetic condition was determined. Light-induced AgNPs were aggregated, spherical and pink, and they were coated with esters, phenols, acids, terpenes, amino acids and sugars, which were the compositions of alfalfa extracts. The concentration of free Ag+ was less than 2 % of the AgNPs concentration. Through nanopriming, Ag+ got into the seedlings and caused the impact of AgNPs on alfalfa. Compared with the control group, low concentration of light-induced AgNPs had a positive effect on the photosynthesis. It was also harmless to the leaf cells, and there was no elongation effect on shoots. Although high concentration of AgNPs was especially beneficial to root elongation, it had a slight toxic effect on seedlings due to the accumulation of silver. With the increase of AgNPs concentration, the content of silver in the seedlings increased and the silver enriched in plants was at the mg/kg level. Just as available research reported the toxicity of NPs can be reduced by using suitable synthesis and application methods, the present light induction, active material encapsulation and nanopriming minimized the toxicity of AgNPs to plants, enhancing the antioxidant enzyme system.


Subject(s)
Metal Nanoparticles , Silver , Medicago sativa/metabolism , Metal Nanoparticles/chemistry , Seedlings/metabolism , Silver/chemistry , Silver Nitrate/pharmacology
5.
Front Plant Sci ; 12: 731838, 2021.
Article in English | MEDLINE | ID: mdl-34691110

ABSTRACT

Rare earth elements (REEs) of low concentration are usually beneficial to plant growth, while they are toxic at high concentrations. The effects of treatment with lanthanum (La) (10 and 20 µM), cerium (Ce) (10 and 20 µM), and terbium (Tb) (10 and 20 µM) on seedling growth of alfalfa (Medicago sativa L.), which is one of the most important perennial leguminous forages in the world, were studied. The results showed that all three REE treatments quickened the germination of seeds. The length of shoot under La (20 µM) treatment was significantly shortened (P < 0.05). In addition, treatment with La, Ce, and Tb had a "hormesis effect" on root length. There was a significant decrease in chlorophyll content on treatment with the three REEs, and the degree of decline was in the order of La < Ce < Tb, under the same concentration. In vitro experiments and quantum chemical calculations were further performed to explain why the treatments with REEs reduced the chlorophyll content. In vitro experiments showed that La, Ce, and Tb treatments reduced the absorbance of chlorophyll, and the decrease followed in the order of La > Ce > Tb. Quantum chemical calculations predicted that the decrease in absorption intensity was caused by the reactions between La, Ce, Tb, and chlorophyll, which formed lanthanides-chlorophyll; and there were five types of stable lanthanides-chlorophyll. In conclusion, the decrease in chlorophyll content on treatment with REEs was caused by the change in chlorophyll structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...