Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 151: 107648, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032406

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and remains the leading cause of cancer deaths. Much progress has been made to treat NSCLC, however, only limited patients can benefit from current treatments. Thus, more efforts are needed to pursue novel molecular modalities for NSCLC treatment. It was demonstrated that pseudo-natural products (PNP) are a critical source for antitumor drug discovery. Herein, we describe a CH activation protocol for the expedient construction of a focused library utilizing the PNP rational design strategy. This protocol features a rhodium-catalyzed CH activation/ [4+2] annulation reaction between N-OAc-indole-2-carboxamide and alkynyl quinols, enabling facile access to diverse quinol substituted ß-carboline derivatives (31 examples). The anticancer activities were assessed in vitro against NSCLC cell line A549, yielding a potent antiproliferative ß-carboline derivative (8r) with an IC50 value of 0.8 ± 0.1 µM. Further investigation revealed that this compound could decrease the expression of Caspase 3, and increase the expression of autophagic protein Cyclin B1, thus markedly inducing autophagy and apoptosis. Mechanistic study suggested that 8r could be a potent anti-NSCLC agent through the AKT/mTOR signaling pathway in A549 cells. Moreover, the anticancer activities were also assessed against three other cancer cell lines, and 8r exhibits a broader inhibitory effect on cell proliferation in all cancer cell lines tested. These results indicated that carboline-based PNPs show great potential to induce cell autophagy and apoptosis, which serve as good leads for further drug discovery.

2.
Sci Rep ; 11(1): 18614, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545111

ABSTRACT

Air pollution is the result of comprehensive evolution of a dynamic and complex system composed of emission sources, topography, meteorology and other environmental factors. The establishment of spatiotemporal evolution model is of great significance for the study of air pollution mechanism, trend prediction, identification of pollution sources and pollution control. In this paper, the air pollution system is described based on cellular automata and restricted agents, and a Swarm Intelligence based Air Pollution SpatioTemporal Evolution (SI-APSTE) model is constructed. Then the spatiotemporal evolution analysis method of air pollution is studied. Taking Henan Province before and after COVID-19 pandemic as an example, the NO2 products of TROPOMI and OMI were analysed based on SI-APSTE model. The tropospheric NO2 Vertical Column Densities (VCDs) distribution characteristics of spatiotemporal variation of Henan province before COVID-19 pandemic were studied. Then the tropospheric NO2 VCDs of TROPOMI was used to study the pandemic period, month-on-month and year-on-year in 18 urban areas of Henan Province. The results show that SI-APSTE model can effectively analyse the spatiotemporal evolution of air pollution by using environmental big data and swarm intelligence, and also can establish a theoretical basis for pollution source identification and trend prediction.


Subject(s)
Air Pollution/analysis , Algorithms , COVID-19/epidemiology , Models, Theoretical , Nitrogen Dioxide/analysis , Pandemics , Air Pollutants/analysis , China/epidemiology , Diffusion , Environmental Monitoring , Geography , Humans , Multivariate Analysis , Seasons , Spatio-Temporal Analysis
3.
J Hazard Mater ; 384: 121283, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31585295

ABSTRACT

Wood is one of the most widely used construction materials but it is thermally degradable and combustible, which poses serious safety concerns. In this research, the high temperature and fire behavior of hydrothermally modified western hemlock, impregnated with carbon nanomaterials pre-adsorbed with alkali lignin, was examined by cone calorimetry, scanning electron microscopy, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. The hydrothermal treatment made the wood less hydrophilic, allowing the formation of a dense protective layer of carbon-rich additives on the external wood surface at low loading (5 wt%) after aqueous-phase vacuum impregnation. Results revealed that the unique combination of these two processes reduced the total heat release by up to 32%, diminished flame spread by 31%, decreased the average carbon dioxide yield by 12%, lowered the total mass loss by 10%, and significantly slowed the pyrolytic reactions of wood. This research has important implications for the development of valued-added wood products with superior fire safety from relatively low cost timbers, such as western hemlock.


Subject(s)
Carbon/chemistry , Fires/prevention & control , Flame Retardants , Nanostructures/chemistry , Wood/chemistry , Hot Temperature , Tsuga/chemistry
4.
Front Plant Sci ; 9: 1316, 2018.
Article in English | MEDLINE | ID: mdl-30271417

ABSTRACT

The study investigated some new developed variable indices and chemometrics for the fast detection of cadmium (Cd) in tobacco root samples by laser-induced breakdown spectroscopy. The variables selection methods of interval partial least squares (iPLS), backward interval partial least squares (BiPLS), and successive projections algorithm (SPA) were used to locate the optimal Cd emission line for univariate analysis and to select the maximal relevant variables for multivariate analysis. iPLS and BiPLS located 10 Cd emission lines to establish univariate analysis models. Univariate analysis model based on Cd I (508.58 nm) performed best with the coefficient of determination of prediction (Rp 2) of 0.9426 and root mean square error of prediction (RMSEP) of 1.060 mg g-1. We developed two new variable indices to remove negative effects for Cd content prediction, including Index1 = (I 508.58 + I 361.05)/2 × I 466.23 and Index2 = I 508.58/I 466.23 based on Cd emission lines at 508.58, 361.05, and 466.23 nm. Univariate model based on Index2 obtained better result (Rp 2 of 0.9502 and RMSEP of 0.988 mg g-1) than univariate analysis based on the best Cd emission line at 508.58 nm. PLS and support vector machines (SVM) were adopted and compared for multivariate analysis. The results of multivariate analysis outperformed univariate analysis and the best quantitative model was achieved by the iPLS-SVM model (Rc 2 of 0.9820, RMSECV of 0.214 mg g-1, Rp 2 of 0.9759, and RMSEP of 0.712 mg g-1) using the maximal relevant variables in the range of 474-526 nm. The results indicated that LIBS coupled with new developed variable index and chemometrics could provide a feasible, effective, and economical approach for fast detecting Cd in tobacco roots.

5.
Sensors (Basel) ; 18(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495445

ABSTRACT

Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

6.
Int J Mol Sci ; 18(11)2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29117109

ABSTRACT

To reduce fire hazards and expand high-value applications of lignocellulosic materials, thin films comprising graphene nanoplatelets (GnPs) and multi-wall carbon nanotubes (CNTs) pre-adsorbed with alkali lignin were deposited by a Meyer rod process. Lightweight and highly flexible papers with increased gas impermeability were obtained by coating a protective layer of carbon nanomaterials in a randomly oriented and overlapped network structure. Assessment of the thermal and flammability properties of papers containing as low as 4 wt % carbon nanomaterials exhibited self-extinguishing behavior and yielded up to 83.5% and 87.7% reduction in weight loss and burning area, respectively, compared to the blank papers. The maximum burning temperature as measured by infrared pyrometry also decreased from 834 °C to 705 °C with the presence of flame retardants. Furthermore, papers coated with composites of GnPs and CNTs pre-adsorbed with lignin showed enhanced thermal stability and superior fire resistance than samples treated with either component alone. These outstanding flame-retardant properties can be attributed to the synergistic effects between GnPs, CNTs and lignin, enhancing physical barrier characteristics, formation of char and thermal management of the material. These results provide great opportunities for the development of efficient, cost-effective and environmentally sustainable flame retardants.


Subject(s)
Flame Retardants/chemical synthesis , Graphite/chemistry , Lignin/chemistry , Nanotubes, Carbon/chemistry , Cellulose/chemistry , Flame Retardants/economics , Microscopy, Electron, Scanning , Molecular Structure , Permeability , Polymers/chemistry , Thermogravimetry
7.
Materials (Basel) ; 10(1)2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28772428

ABSTRACT

Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection.

8.
Front Plant Sci ; 8: 1371, 2017.
Article in English | MEDLINE | ID: mdl-28848575

ABSTRACT

Elucidating the differences in gene expression profiles of plants with different ploidy levels and how they affect phenotypic traits is vital to allow genetic improvement of plants such as Ma bamboo (Dendrocalamus latiflorus Munro). We previously obtained triploid (2n = 3X = 36), hexaploid (2n = 6X = 72), and dodecaploid (2n = 12X = 144) Ma bamboo plants from embryogenic callus by anther culturing. Phenotypic differences between these plants appeared to be correlated with differences in ploidy. Here, we performed transcriptome profiling and sequencing of anther-regenerated plants and F1 seedlings of different ploidy levels using RNA-Seq technology. Pair-wise comparisons of the four resulting libraries revealed 8,396 differentially expressed genes. These differentially expressed genes were annotated, functionally classified, and partially validated. We found that the chromosome doubling led to substantially up- or down-regulation of genes that were involved in cell growth and differentiation; the polyploidy levels altered the anatomical, physiological and growth characteristics, such as leaf thickness, fusoid cell and stomatal size, shoot number, photosynthesis and respiration rate and so on. Additionally, two candidate genes, EXPB3 and TCP with potenitial regulatory roles in cell division and differentiation, were identified through gene coexpresseion network analysis. These results highlight the significance of potential applications of polyploidy, and provide valuable information for the genetic breeding of bamboo species.

9.
Sci Rep ; 7: 44551, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300144

ABSTRACT

Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.


Subject(s)
Plant Diseases/virology , Plant Leaves/virology , Spectrum Analysis/methods , Tobacco Mosaic Virus/isolation & purification , Humans , Lasers , Tobacco Mosaic Virus/genetics
10.
Carbohydr Polym ; 155: 163-172, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27702500

ABSTRACT

The changes of porosity, chemical composition and cellulose crystalline structure of Spruce (Picea abies Karst.) wood cell walls due to compression combined with steam treatment (CS-treatment) were investigated by nitrogen adsorption, confocal Raman microscopy (CRM) and X-ray diffraction (XRD), respectively. A number of slit-shaped mesopores with a diameter of 3.7nm was formed for the CS-treated wood, and more mesopores were found in the steam-treated wood. CRM results revealed cellulose structure was affected by treatment and ß-aryl-ether links associated to guaiacyl units of lignin was depolymerized followed by re-condensation reactions. The crystallinity index (CrI) and crystallite thickness (D200) of cellulose for CS-treated wood were largely increased due to crystallization in the semicrystalline region. Higher degree of increase in both CrI and D200 was observed in both the earlywood and latewood of steam-treated wood, ascribing to the greater amount of mesopores in steam-treated wood than CS-treated wood.

11.
ACS Appl Mater Interfaces ; 8(45): 31295-31303, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27779385

ABSTRACT

We report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CNX) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CNX concentration (less than 0.2 wt % to the internal phase) produced important changes in the macroporous monolith functionalization, which in turn led to increased monolith hydrophobicity and pore openness. These materials displayed great oleophilicity with water contact angles as high as 140° making them apt for biodiesel, diesel, and gasoline fuel sorption applications. Overall, styrene divinylbenzene (StDvB) based poly(HIPEs) showed hydrophobicity and fuel sorption capacities as high as 4.8 (g/g). Pore hierarchy, namely pore openness, regulated sorption capacity, and sorption times where greater openness resulted in faster sorption and increased sorption capacity. Monoliths were subject to 20 sorption-desorption cycles demonstrating recyclability and stable sorption capacity. Finally, CNX/surfactant hybrids made it possible to reduce surfactant requirements for successful HIPE formation and stabilization during polymerization. All poly(HIPEs) retained acceptable conversion as a function of CNX loading nearing 90% or better with thermal stability as high as 283 °C.

12.
Carbohydr Polym ; 153: 445-454, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561516

ABSTRACT

The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems.


Subject(s)
Cellulose/chemistry , Cottonseed Oil/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Cellulose/ultrastructure , Hydrogels/chemistry , Nanoparticles/ultrastructure , Rheology , Suspensions , Viscosity
13.
ACS Appl Mater Interfaces ; 7(44): 24799-809, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26492498

ABSTRACT

Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.


Subject(s)
Bentonite/chemistry , Filtration/methods , Soybean Proteins/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Oil and Gas Industry , Particle Size , Permeability , Porosity , Pressure , Surface Properties , Viscosity
14.
ACS Appl Mater Interfaces ; 7(27): 15108-16, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26110209

ABSTRACT

A novel route to fabricate low-cost porous carbon nanofibers (CNFs) using biomass tar, polyacrylonitrile (PAN), and silver nanoparticles has been demonstrated through electrospinning and subsequent stabilization and carbonization processes. The continuous electrospun nanofibers had average diameters ranging from 392 to 903 nm. The addition of biomass tar resulted in increased fiber diameters, reduced thermal stabilities, and slowed cyclization reactions of PAN in the as-spun nanofibers. After stabilization and carbonization, the resultant CNFs showed more uniformly sized and reduced average diameters (226-507 nm) compared to as-spun nanofibers. The CNFs exhibited high specific surface area (>400 m(2)/g) and microporosity, attributed to the combined effects of phase separations of the tar and PAN and thermal decompositions of tar components. These pore characteristics increased the exposures and contacts of silver nanoparticles to the bacteria including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, leading to excellent antimicrobial performances of as-spun nanofibers and CNFs. A new strategy is thus provided for utilizing biomass tar as a low-cost precursor to prepare functional CNFs and reduce environmental pollutions associated with direct disposal of tar as an industrial waste.


Subject(s)
Acrylic Resins/chemistry , Bacterial Physiological Phenomena/drug effects , Coal Tar/chemistry , Metal Nanoparticles/administration & dosage , Nanofibers/administration & dosage , Silver/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Carbon/chemistry , Cell Survival/drug effects , Electroplating/methods , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Porosity , Rotation , Silver/chemistry
15.
ACS Appl Mater Interfaces ; 7(8): 5006-16, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25679499

ABSTRACT

Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical "core-shell" structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had superior rheological properties, higher temperature stability, less fluid loss volume, and thinner filter cakes than BT and MFC/BT-WDFs. Moreover, the presence of polyanionic cellulose (PAC) further improved the rheological and filtration performances of CNC/BT-WDFs, suggesting a synergistic effect between PAC and CNCs.

16.
Carbohydr Polym ; 115: 207-14, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439887

ABSTRACT

The effects of compression combined with steam treatment (CS-treatment), i.e. a hygro-mechanical steam treatment on Spruce wood were studied on a cell-structure level to understand the chemical and physical changes of the secondary cell wall occurring under such conditions. Specially, imaging FT-IR microscopy, nanoindentation and dynamic vapour absorption were used to track changes in the chemical structure, in micromechanical and hygroscopic properties. It was shown that CS-treatment resulted in different changes in morphological, chemical and physical properties of the cell wall, in comparison with those under pure steam treatment. After CS-treatment, the cellular structure displayed significant deformations, and the biopolymer components, e.g. hemicellulose and lignin, were degraded, resulting in decreased hygroscopicity and increased mechanical properties of the wood compared to both untreated and steam treated wood. Moreover, CS-treatment resulted in a higher degree of degradation especially in earlywood compared to a more uniform behaviour of wood treated only by steam.


Subject(s)
Cell Wall/drug effects , Mechanical Phenomena , Pressure , Steam , Wood/cytology , Wood/drug effects , Biomechanical Phenomena , Cell Wall/metabolism , Materials Testing , Picea/cytology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...