Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Med Food ; 27(5): 419-427, 2024 May.
Article in English | MEDLINE | ID: mdl-38656897

ABSTRACT

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Subject(s)
Actinidia , Cell Adhesion , Glycogen Synthase Kinase 3 beta , Human Umbilical Vein Endothelial Cells , Inositol , Monocytes , NF-kappa B , PTEN Phosphohydrolase , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Humans , NF-kappa B/metabolism , NF-kappa B/genetics , Monocytes/drug effects , Monocytes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Actinidia/chemistry , Animals , Plant Extracts/pharmacology , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Adhesion/drug effects , Mice , Inositol/pharmacology , Inositol/analogs & derivatives , Mice, Inbred C57BL , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Male
2.
Antioxidants (Basel) ; 12(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38001757

ABSTRACT

Undaria pinnatifida, a marine biological resource from which antioxidants such as polysaccharides can be obtained, is primarily distributed in the coastal areas of East Asia. Reactive oxygen species (ROS) are essential for physiological processes; however, excess ROS levels in the body result in cellular oxidative damage. Several extraction methods exist; however, factors such as long extraction times and high temperatures degrade polysaccharides. Therefore, this study aimed to increase the yield of U. pinnatifida sporophyll extract (UPE), a U. pinnatifida byproduct, using ultrasonication, an environmentally friendly extraction method, and identify UPE components with antioxidant activity. UPE_2, 4, 6, and 8 extracts were obtained at extraction times of 2, 4, 6, and 8 h, respectively. UPE_8 had the highest yield (31.91%) and polysaccharide (69.22%), polyphenol, (8.59 GAE µg/mg), and fucoxanthin contents (2.3 µg/g). UPE_8 showed the greatest protective and inhibitory effects on ROS generation in H2O2-damaged Vero cells. Ethanol precipitation of UPE_8 confirmed that UPE_8P (precipitate) had superior antioxidant activity in Vero cells compared to UPE_8S (supernatant). UPE_8P contained a large amount of polysaccharides, a major contributor to the antioxidant activity of UPE_8. This study shows that UPE_8 obtained using ultrasonication can be a functional food ingredient with excellent antioxidant activity.

3.
Food Chem X ; 18: 100722, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397222

ABSTRACT

Edible insects are promising future food resources globally. Herein, the structural, physicochemical, and bio-functional properties of edible insect protein isolates (EPIs) extracted from Protaetia brevitarsis larvae were investigated. The results showed that EPIs have a high total essential amino acid content; moreover, ß-sheet is the major secondary protein structure. The EPI protein solution was highly soluble and electrically stable and did not aggregate easily. In addition, EPIs exhibited immune-enhancing properties; EPI treatment of macrophages induced the activation of macrophages and consequently promoted the production of pro-inflammatory mediators (NO, TNF-α, and IL-1ß). Moreover, macrophage activation of EPIs was confirmed to occur through the MAPK and NF-κB pathways. In conclusion, our results suggest that the isolated P. brevitarsis protein can be fully utilized as a functional food material and alternative protein source in the future food industry.

4.
Mar Drugs ; 21(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37504905

ABSTRACT

Fucoidans are sulfate-rich polysaccharides with a wide variety of beneficial biological activities. The present study aimed to highlight the anti-inflammatory activity of fucoidan from the brown seaweed Sargassum autumnale (SA) against lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells. Among the isolated fucoidan fractions, the third fraction (SAF3) showed a superior protective effect on LPS-stimulated RAW 264.7 cells. SAF3 inhibits nitric oxide (NO) production and expression of prostaglandin E-2 (PGE2) via downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) expression in LPS-induced RAW 26.7 cells. SAF3 treatment decreased pro-inflammatory cytokines IL-1ß, TNF-α, and IL-6 expression in LPS-induced cells. LPS stimulation activated NF-κB and MAPK signaling cascades in RAW 264.7 cells, while treatment with SAF3 suppressed them in a concentration-dependent manner. Existing outcomes confirm that SAF3 from S. autumnale possesses potent anti-inflammatory activity and exhibits good potential for application as a functional food ingredient or for the treatment of inflammation-related disorders.


Subject(s)
NF-kappa B , Sargassum , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Sargassum/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , RAW 264.7 Cells , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism
5.
Food Chem ; 399: 133897, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36037683

ABSTRACT

Many angiotensin-I-converting enzyme (ACE) inhibitory peptides are used to prevent and manage hypertension. In this study, ACE inhibitory peptides were isolated from an insect protein that is attracting attention for it potential antihypertensive activity. Protaetia brevitarsis larva protein was enzymatically hydrolyzed by Flavourzyme®, and the hydrolysate was shown to inhibit ACE. Subsequent fractionation, using ultrafiltration and gel permeation chromatography followed by liquid chromatography-tandem mass spectrometry analysis, identified four previously unknown peptides with significant ACE inhibition characteristics (Ser-Tyr, Pro-Phe, Tyr-Pro-Tyr, and Trp-Ile). The highest inhibition activity observed for Trp-Ile. These peptides stimulated production of NO in human umbilical vein endothelial cells and, based on molecular docking analysis, exerted their inhibitory effects via hydrogen bonding with the ACE receptor active site. Thus, the identified peptides can be considered as promising candidates for ACE inhibition and have potential to be used as functional food ingredients.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensins , Animals , Endopeptidases , Endothelial Cells/metabolism , Humans , Larva/metabolism , Molecular Docking Simulation , Peptides/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Hydrolysates/chemistry
6.
Food Chem ; 384: 132591, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35413773

ABSTRACT

In this study, we investigated the potential antioxidant abilities of low-molecular weight fucoidans from enzyme-assisted hydrolysates of Sargassum autumnale, based on molecular weight changes, in vitro and in vivo. The yield and free radical-scavenging activities of enzyme-assisted hydrolysates of S. autumnale were screened. The protamex-assisted hydrolysate of S. autumnale (SAP) presented the highest yield and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity; therefore, it was chosen for fucoidan purification. Three fucoidan fractions were observed in SAP, and their antioxidant activity was assessed. Fucoidan fraction 3 of protamex-assisted hydrolysate of S. autumnale (SAPF3) offered significant protection against H2O2-induced oxidative stress, and was structurally and physically similar to commercial fucoidan. Fucose and low-molecular weight fucoidans were highly concentrated in SAPF3. The results of our study show that SAPF3, a low-molecular weight fucoidan from S. autumnale, possesses strong antioxidant properties and may be an effective alternative to antioxidant agents in the functional food industry.


Subject(s)
Sargassum , Animals , Antioxidants/chemistry , Hydrogen Peroxide/pharmacology , Molecular Weight , Oxidative Stress , Polysaccharides/chemistry , Sargassum/chemistry , Zebrafish
7.
Food Chem Toxicol ; 162: 112862, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35157925

ABSTRACT

Fucoidan from marine algae is used as a functional ingredient in the food. Here, we purified fucoidan fractions from a crude polysaccharide obtained after the crude polysaccharide of celluclast-assisted hydrolysate from Ecklonia cava (ECC). We evaluated the effect of ECC on lipid accumulation in differentiated 3T3-L1 adipocytes and investigated its anti-obesity effects in vivo in high-fat diet (HFD)-induced obese mice. In vitro Oil Red O staining revealed that treatment with ECC and its purified fucoidan fractions of celluclast assisted hydrolysate from Ecklonia cava (ECFs) remarkably reduced lipid accumulation in 3T3-L1 cells. ECF3 contained the highest contents of polysaccharides and sulfate compared with other fucoidan fractions. ECF3 treatment significantly reduced lipid accumulation in 3T3-L1 cells. Oral administration of ECC significantly reduced body weight, body weight gain, serum lipid content, and total white adipose tissue mass. Histological analysis revealed that ECC reduced lipid accumulation in EAT and liver tissues. Our findings suggest that the anti-obesity effects of ECC are associated with suppressing lipid accumulation in white adipose tissues and increased energy expenditure by upregulating the expression of thermogenic UCP1 and UCP3 in BAT. These results indicate that ECC and its ECFs possess anti-obesity properties and can be used in food and nutraceutical industries.

8.
Biochem Biophys Res Commun ; 586: 49-54, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34826700

ABSTRACT

Maltodextrin glucosidase (MalZ) is a key enzyme in the maltose utilization pathway in Escherichia coli that liberates glucose from the reducing end of the short malto-oligosaccharides. Unlike other enzymes in the GH13_21 subfamily, the hydrolytic activity of MalZ is limited to maltodextrin rather than long starch substrates, forming various transglycosylation products in α-1,3, α-1,4 or α-1,6 linkages. The mechanism for the substrate binding and hydrolysis of this enzyme is not well understood yet. Here, we present the dimeric crystal structure of MalZ, with the N-domain generating a unique substrate binding groove. The N-domain bears CBM34 architecture and forms a part of the active site in the catalytic domain of the adjacent molecule. The groove found between the N-domain and catalytic domain from the adjacent molecule, shapes active sites suitable for short malto-oligosaccharides, but hinders long stretches of oligosaccharides. The conserved residue of E44 protrudes at subsite +2, elucidating the hydrolysis pattern of the substrate by the glucose unit from the reducing end. The structural analysis provides a molecular basis for the substrate specificity and the enzymatic property, and has potential industrial application for protein engineering.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Glucose/chemistry , Glycoside Hydrolases/chemistry , Polysaccharides/chemistry , Biocatalysis , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucose/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Models, Molecular , Polysaccharides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
9.
Int J Biol Macromol ; 188: 245-252, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34384800

ABSTRACT

To increase the value of yeast-fermented Korean liquor by-products, we obtained crude polysaccharide (CPS) fractions via ultrasound-assisted extraction and stepwise-gradient ethanol precipitation and investigated their functionality. Nitric oxide production in RAW 264.7 cells was increased following treatment with the CPSs derived from extract. Analysis of the monosaccharide and amino acid composition of the CPS fractions using HPLC revealed that the polysaccharides were mainly composed of glucose (57.2%), mannose (22.6%), and galactose (17.6%), and no amino acids were detected. In addition, a higher concentration of ethanol solvent for fractionation yielded polysaccharides with lower molecular weights (<15 kDa). CPS 3 and 4 fractions increased the production of TNF-α (15 and 17-fold, respectively) and IL-6 (20 and 18-fold, respectively) and iNOS (65 and 35-fold, respectively) expression at concentration 12.5 µg/mL compared with levels in non-treated RAW 264.7 cells. Especially, CPS 4 at 200 and 400 µg/mL significantly increased the proliferation of mouse spleen cells by 126% and 153%, respectively. These results indicated that CPS 4 enhanced the proliferation of mouse spleen cells in vivo, indicating its immune-enhancing effects. Therefore, this research can contribute to the development of eco-friendly extraction techniques and immune-enhancing materials.


Subject(s)
Monosaccharides/chemistry , Polysaccharides/chemistry , Saccharomyces cerevisiae/chemistry , Animals , Chemical Fractionation , Fermentation/drug effects , Mice , Molecular Weight , Monosaccharides/pharmacology , Nitric Oxide/chemistry , Nitric Oxide Synthase Type II/genetics , Polysaccharides/pharmacology , RAW 264.7 Cells , Republic of Korea , Saccharomyces cerevisiae/genetics , Tumor Necrosis Factor-alpha/genetics
10.
Polymers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209976

ABSTRACT

Collagen is a protein that is a major component of animal skins and tendons. It is used in various medical, cosmetic, and food products through extraction and purification. The fibrous products of purified collagen fibers extracted from raw mammal materials have relatively excellent mechanical properties and are used for high-end medical products. In this study, we examined collagen materials produced from porcine and fish skins, which are major sources of collagen raw materials. We examined a method for spinning collagen fibers from fish skin-based collagen and analyzed the physical properties of those collagen fibers. In addition, we examined the characteristics and advantages of conjugated fibers according to their porcine- and/or fish skin-based compositions. The spinnability and mechanical properties of these conjugated fibers were analyzed according to their compositions. The mechanical properties of collagen structure are determined by hydroxyproline content and can be manipulated by the composition of collagen in the conjugated fibers.

11.
Ultrason Sonochem ; 76: 105620, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34119906

ABSTRACT

Although the immune enhancing effect of yeast has been widely reported, studies specifically investigating its effects on skin cancer are lacking. Therefore, this study aimed to develop a yeast extract capable of inhibiting melanoma cells using ultrasound technology, which can lyse the cell walls allowing subsequent rapid yeast extraction. To compare the extraction efficiency across different extraction methods, the total yield, as well as total glucan, α-glucan, and ß-glucan yields were measured. Ultrasound-assisted extract of yeast (UAEY) was found to effectively inhibit melanoma cell growth and proliferation as well as the expression of cyclin D1 and c-myc, in vitro. Additionally, the extract reduced melanoma tumor volume and cyclin D1 levels in BALB/c nu/nu mice. The optimal extraction conditions were 0.2 M NaOH, 3 h, 70 °C, 20 kHz, and 800 W, resulting in an increased total extraction and ß-glucan yields of 73.6% and 7.1%, respectively, compared with that achieved using a conventional chemical (0.5 M NaOH) extraction method. Taken together, the results of this study suggest that UAEY may represent an effective anti-skin cancer agent.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Melanoma/pathology , Saccharomyces cerevisiae/chemistry , Ultrasonic Waves , Animals , Cell Proliferation/drug effects , Cell Wall/drug effects , Mice , Mice, Inbred BALB C , Skin Neoplasms/pathology , Tumor Burden/drug effects
12.
Food Chem ; 354: 129582, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33756313

ABSTRACT

Sesame is a popular functional food in Asia. However, research on sesame seed oil cake compounds and their extraction methods is lacking. Ultrasound technology was applied to develop an efficient extraction method for this purpose. First, pilot-scale extraction from sesame oil cake was performed and optimized using response surface methodology. The extract obtained using optimized conditions (0% ethanol for 4 h at 20°C) showed the highest yield (45.1%) and inhibitory effect on reactive oxygen species (ROS; 55.1%). Compared to extracts obtained by conventional extraction methods, those obtained by ultrasound technology exhibited a higher extraction yield, greater antioxidant effect, and increased lignan content. Based on pilot-scale experiments, an industrial-scale ultrasonic extraction system was designed to extract a 2.1-ton solution at once. The extract contained sesaminol 1,2-diglucoside (4.6 mg/g) as the major component and showed 28.3% ROS inhibition activity. Our industrial ultrasound-assisted extraction method has potential application for other compounds.


Subject(s)
Chemical Fractionation/methods , Industry , Sesame Oil/chemistry , Ultrasonic Waves , Ethanol/chemistry , Functional Food/analysis , Lignans/analysis , Lignans/isolation & purification , Reactive Oxygen Species/analysis
13.
Mar Drugs ; 19(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567534

ABSTRACT

Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed worldwide. Several biological activities of S. horneri have been reported. However, its effects on lipid metabolism and the underlying mechanisms remain elusive. In the present study, we examined the inhibitory effect of the active compound "(-)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))" from S. horneri extract on lipid accumulation in differentiated adipocytes. MTT assays demonstrated that (-)-loliolide is not toxic to 3T3-L1 adipocytes in a range of concentrations. (-)-loliolide significantly reduced intracellular lipid accumulation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot analysis revealed that (-)-loliolide increased the expression of lipolytic protein phospho-hormone-sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1). Additionally, (-)-loliolide decreased expression of adipogenic and lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (-)-loliolide from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (-)-loliolide, it can be useful as a lipid-lowering agent in the management of patients who suffer from obesity.


Subject(s)
Benzofurans/pharmacology , Lipid Metabolism/drug effects , Sargassum/chemistry , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , CCAAT-Enhancer-Binding Protein-alpha/antagonists & inhibitors , Lipolysis/drug effects , Mice , Obesity/drug therapy , PPAR gamma/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Thermogenesis/drug effects
14.
Phytomedicine ; 81: 153418, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33302042

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is an inflammatory chronic skin disease that is characterized by the dysfunction or lack of skin barrier proteins. Recent studies have proposed that the pharmacological upregulation of skin barrier proteins is an effective treatment for AD. Aryl hydrocarbon receptor (AhR) is a transcription factor that positively regulates the expression of skin barrier proteins upon its activation. PURPOSE: This study aimed to identify AhR agonists from phytochemicals and investigate its effect on skin barrier restoration as well as its mechanisms of action in AD. STUDY DESIGN: A publicly available assay database and HaCaT cells stably transduced with a luciferase gene driven by an AhR-target gene promoter (CYP1A1) were used to screen for the activity of AhR agonists from phytochemicals. Normal human epidermal keratinocytes (NHEKs) and a human skin equivalent (HSE) model were used to investigate the effect of AhR agonists on skin restoration and its underlying mechanisms. METHODS: A Gaussia luciferase assaywas performed to screen for AhR agonist activity. Western blotting, qRT-PCR analysis, immunofluorescence, drug affinity responsive target stability assay, and siRNA-mediated AhR knockdown were performed in NHEKs. Hematoxylin and eosin staining was performed to measure epidermal thickness in the HSE model. RESULTS: Diosmin, a potential AhR agonist derived from natural products, upregulated the expression of skin barrier proteins (filaggrin and loricrin) and their upstream regulator (OVOL1) in NHEKs. Diosmin treatment also increased epidermal thickness in the HSE model. In addition, incubating NHEKs with diosmin restored the expression of skin barrier proteins and mRNAs that were suppressed by Th2 cytokines and inhibited STAT3 phosphorylation that was induced by Th2 cytokines. Diosmin also upregulated the expression of NQO1, a negative regulator of STAT3. Immunofluorescence results showed that diosmin stimulated AhR nuclear translocation, and the drug affinity responsive target stability assay revealed that this phytochemical directly bound to AhR. Furthermore, AhR knockdown abolished diosmin-induced filaggrin and loricrin expression. CONCLUSION: These results suggest that diosmin is a potential treatment for AD that targets AhR.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Dermatitis, Atopic/drug therapy , Dermatologic Agents/pharmacology , Diosmin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Skin/drug effects , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , DNA-Binding Proteins/metabolism , Dermatitis, Atopic/pathology , Drug Evaluation, Preclinical/methods , Filaggrin Proteins , Gene Expression Regulation/drug effects , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phytochemicals/pharmacology , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/genetics , Skin/metabolism , Skin/pathology , Th2 Cells/metabolism , Transcription Factors/metabolism , Up-Regulation/drug effects
15.
Nutrients ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138053

ABSTRACT

Obesity is a metabolic disease characterized by an increased risk of type 2 diabetes, hypertension, and cardiovascular disease. We have previously reported that compounds isolated from brown alga, Sargassum thunbergii (ST; Sargassum thunbergii (Mertens ex Roth) Kuntze), inhibit adipogenesis in 3T3-L1 cells. However, the in vivo anti-obesity effects of these compounds have not been previously reported. Therefore, the objective of this study was to determine the effects of ST on weight loss, fat accumulation, as well as risk factors for type 2 diabetes and cardiovascular disease in high-fat diet (HFD)-induced obese mice. ST treatment significantly decreased body weight and fat accumulation in HFD-induced obese mice, while reducing insulin and factors related to cardiovascular diseases (triglyceride and total cholesterol) in serum. ST-induced downregulation of PPARγ in white adipose tissue, and upregulation of the thermogenic genes, UCP-1 and UCP-3, in brown adipose tissue was also observed. In addition, oral administration of ST reduced the occurrence of fatty liver, as well as the amount of white adipose tissue in HFD mice. Cumulatively, these results suggest that ST exerts anti-obesity effects and may serve as a potential anti-obesity therapeutic agent.


Subject(s)
Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Sargassum/chemistry , Thermogenesis/drug effects , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Down-Regulation/drug effects , Heart Disease Risk Factors , Mice , Mice, Obese , Obesity/etiology , PPAR gamma/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 3/metabolism , Up-Regulation/drug effects , Weight Loss/drug effects
16.
Food Sci Nutr ; 8(5): 2205-2213, 2020 May.
Article in English | MEDLINE | ID: mdl-32405377

ABSTRACT

The fruit of Arctium lappa L. (Arctii Fructus) is one of the most popularly used medicinal plant components in Asia. To enhance the functionality of Arctii Fructus extract, a bioconversion method was developed to produce arctigenin from arctiin. Treatment with ß-glucosidase increased the arctigenin content by >5 fold in Arctii Fructus extracts. The bioconversion products enhanced the apoptosis of cancer cells. The cell viabilities of gefitinib-resistant lung cancer HCC827 (HCC827GR) cells and colon cancer cells (DLD1) were decreased by 40% and 35%, respectively. The bioconversion products also decreased anchorage-independent growth of cancer cells. In addition, the increase of apoptosis in cancer cells by bioconversion was confirmed by the flow cytometry analysis. These results indicated that arctigenin exerts anticancer effects on lung and colon cancer cells and that Arctii Fructus can potentially function as a chemopreventive agent. In addition, bioconverted Arctii Fructus extract displayed higher anticancer activity than the same levels of purified arctigenin, indicating the advantage of consuming Arctii Fructus itself as a food or medicinal material.

17.
Nutr Res ; 77: 85-96, 2020 05.
Article in English | MEDLINE | ID: mdl-32388084

ABSTRACT

Atherosclerosis is a chronic inflammatory disease affecting the aorta and is a major cause of cardiovascular disease. Arctium lappa root is a plant widely used in traditional Chinese medicine (TCM), and Arctium lappa root extract (ALE) has been reported to exhibit anti-inflammatory capacity and to ameliorate endothelial dysfunction. Thus, we hypothesized that ALE would inhibit the early atherosclerotic stage. In this study, we evaluated the inhibitory effect of ALE on early arteriosclerosis and its mechanisms of action. ALE suppressed TNF-α-induced monocyte adhesion to the vascular endothelium by suppressing NF-κB signaling in HUVECs. In an acute mouse model of atherosclerosis, ALE suppressed TNF-α-induced monocyte infiltration of the vascular endothelium and the expression of genes encoding inflammatory cytokines including IL-1ß, IL-6, TNF-α, and MCP-1 in the mouse aorta. Moreover, inulin-type fructan and amino acids, especially L-aspartate and L-arginine (60.27 and 42.17 mg/g, respectively) were detected by NMR, MALDI-TOF MS, and HPLC analysis as the main components of ALE. Notably, L-arginine suppressed TNF-α-induced monocyte adhesion to HUVECs. Therefore, these results suggest that ALE may be a functional food for the suppression or prevention of early stages of atherosclerosis.


Subject(s)
Arctium , Arginine/analysis , Atherosclerosis/prevention & control , Plant Extracts/pharmacology , Plant Roots/chemistry , Tumor Necrosis Factor-alpha/pharmacology , Amino Acids , Animals , Aorta/metabolism , Cell Adhesion , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Endothelium, Vascular/physiology , Fructans/analysis , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/physiology , NF-kappa B/metabolism , Plant Extracts/chemistry , Signal Transduction , THP-1 Cells , Transcription Factor RelA/metabolism , Transcriptional Activation
18.
Ultrason Sonochem ; 61: 104803, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31670253

ABSTRACT

Silk fibroin, which is derived from sericin through degumming, is mainly used as a biomaterial. However, interest in functional verification and industrial applications of sericin has been growing for several years. We used ultrasonication to simplify the extraction process of the silk peptide under low salt conditions at 20 °C, instead of using the conventional conditions of high salt and temperature. The concentration of the silk peptide was measured to determine the optimized extraction time and solvent, which were 4 h and 0.1 N NaOH, respectively. The molecular weight of the enzyme-treated silk peptide was measured using SDS-PAGE and GPC. Silk peptide treated with papain after ultrasound had a molecular weight of less than 5 kDa, and the papain treated-silk peptide reduced solar ultraviolet-induced COX-2 expression through inhibition of ERK phosphorylation. This is the first study investigating simultaneous extraction of fibroin and sericin, which can be used for mass production of food materials.


Subject(s)
Dermatitis/prevention & control , Fibroins/biosynthesis , Papain/therapeutic use , Sunlight/adverse effects , Ultrasonic Waves , Animals , Bombyx , Dermatitis/etiology
19.
PLoS One ; 14(9): e0222559, 2019.
Article in English | MEDLINE | ID: mdl-31518371

ABSTRACT

Irisin is an exercise-induced myokine that has various physiological functions, such as roles in energy expenditure, glucose/lipid metabolism, and muscle development. In muscle development, myoblast proliferation is known to be a first step, and recent studies have reported that an increased irisin level is involved in the promotion of cell proliferation in various cell types, including myoblasts. However, the exact mechanism of action by which irisin promotes myoblast proliferation has not been reported. In this study, we aimed to determine the pro-proliferative effect of irisin on C2C12 myoblasts and its mechanism of action. Irisin induced C2C12 cell proliferation and upregulated the mRNA levels of markers of proliferation Pcna, Mki67, and Mcm2. Irisin increased extracellular signal-regulated kinase (ERK) phosphorylation, and U0126, an ERK pathway inhibitor, suppressed irisin-induced C2C12 cell proliferation. Transcriptomic and qRT-PCR analysis showed that Ccl2, Ccl7, Ccl8, and C3 are potential downstream regulators of ERK signaling that promote C2C12 cell proliferation. Knockdown of Ccl7 revealed that irisin upregulates chemokine (C-C motif) ligand 7 (CCL7) and subsequently promotes C2C12 cell proliferation. These results suggest that irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation and may aid in understanding how irisin contributes to muscle development.


Subject(s)
Cell Proliferation/genetics , Chemokine CCL7/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Fibronectins/genetics , Myoblasts/physiology , Up-Regulation/genetics , Animals , Cell Line , Mice , Phosphorylation/genetics , RNA, Messenger/genetics , Signal Transduction/genetics , Transcriptome/genetics
20.
Eur J Pharmacol ; 841: 19-27, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30287155

ABSTRACT

Dietary garlic has been suggested to possess anticancer properties, and several attempts have been made to isolate the anticancer compounds. In this study, we efficiently synthesized N-benzyl-N-methyl-dodecan-1-amine (BMDA) by the reductive amination method. We evaluated the potential anticancer activities of BMDA against A549 lung cancer cells with cancer stem cell-like phenotypes due to the overexpression of cancer upregulated gene (CUG)2. N-Benzyl-N-methyl-dodecan-1-amine treatment sensitized A549 cells overexpressing CUG2 (A549-CUG2) to apoptosis and autophagy compared with those of the control cells. The treatment with BMDA also reduced tumor development in xenografted nude mice. Furthermore, BMDA inhibited cell migration, invasion, and sphere formation in A549-CUG2 cells, in which TGF-ß signaling is involved. Further analysis showed that BMDA hindered TGF-ß promoter activity, protein synthesis, and phosphorylation of Smad2, thus decreasing the expression of TGF-ß-targeted proteins, including Snail and Twist. N-Benzyl-N-methyl-dodecan-1-amine also decreased Twist expression in vivo. In addition, BMDA inhibited Akt-ERK activities, ß-catenin expression, and its transcriptional activity. These results suggest that BMDA can be a promising anticancer agent against cancer cells overexpressing CUG2.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Chromosomal Proteins, Non-Histone/genetics , Garlic/chemistry , Up-Regulation/drug effects , A549 Cells , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice, Inbred BALB C , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...