Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1169-1176, 2016 Apr 22.
Article in Chinese | MEDLINE | ID: mdl-29732773

ABSTRACT

A greenhouse pot experiment was conducted to study the effects of nitrogen application on the yield and nitrogen use efficiency of rapeseed under post anthesis waterlogging condition. Two high nitrogen use efficiency rapeseed genotypes 'Monty' and 'Xiangyou 15' and two low nitrogen use efficiency rapeseed genotypes 'R210' and 'Bin270' were treated with 3 nitrogen levels (0.05, 0.2, 0.3 g N·kg-1soil) under waterlogging or normal water condition. The results showed that compared with the normal water condition, rapeseed pods per plant, 1000-seed mass, seed number per pod and seed yield decreased significantly under post anthesis waterlogging condition. Under the normal water condition, yield increased significantly along with the increment of nitrogen fertilizer, while under waterlogging condition the contribution of increment of nitrogen fertilizer was not significant. Compared with the low nitrogen use efficiency rapeseed genotypes, the high nitrogen use efficiency rapeseed genotypes stimulated seed filling under post anthesis waterlogging condition. Under the same water treatment, nitrogen use efficiency, nitrogen partial factor productivity, agronomic nitrogen use efficiency, nitrogen uptake efficiency and N harvest index of nitrogen fertilizer decreased significantly as the results of post anthesis waterlogging, nitrogen uptake and utilization capability of different rapeseed genotypes were affected significantly by waterlogging. Compared with the low nitrogen use efficiency rapeseed genotypes, the high nitrogen use efficiency rapeseed genotypes were more conducive to nitrogen translocation and redistribution of nitrogen to the pods under waterlogging condition, thus improving the seed production efficiency. Significant water and nitrogen interaction effects existed in rapeseed yield performance parameters, and the effects of water, nitrogen fertilizer and their interaction on rapeseed yield and yield performance parameters varied among diffe-rent genotypes.


Subject(s)
Brassica napus/metabolism , Fertilizers , Nitrogen/metabolism , Genotype , Seeds/growth & development , Water
2.
Theor Appl Genet ; 113(1): 55-62, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16783591

ABSTRACT

Dominant genic male sterility (DGMS) has been playing an increasingly important role, not only as a tool for assisting in recurrent selection but also as an alternative approach for efficient production of hybrids. Previous studies indicate that fertility restoration of DGMS is the action of another unlinked dominant gene. Recently, through classical genetic analysis with various test populations we have verified that in a DGMS line 609AB the trait is inherited in a multiple allelic pattern. In this study, we applied molecular marker technology to provide further validation of the results. Eight amplified fragment length polymorphism (AFLP) markers tightly linked to the male sterility allele (Ms) were identified in a BC1 population from a cross between 609A (a sterile plant in 609AB) and a temporary maintainer GS2467 as recurrent parent. Four out of the eight markers reproduced the same polymorphism in a larger BC(1) population generated with microspore-derived doubled haploid (DH) parents (S148 and S467). The two nearest AFLP markers SA12MG14 and P05MG15, flanking the Ms locus at respective distances of 0.3 centiMorgan (cM) and 1.6 cM, were converted into sequence characterized amplified region (SCAR) markers designated SC6 and SC9. Based on the sequence difference of the marker P05MG15 between S148 and a DH restorer line S103, we further developed a SCAR marker SC9f that is specific to the restorer allele (Mf). The map distance between SC9f and Mf was consistent with that between SC9 and Ms allele. Therefore, successful conversion of the marker tightly linked to Ms into a marker tightly linked to Mf suggested that the restoration for DGMS in 609AB is controlled by an allele at the Ms locus or a tightly linked gene (regarded as an allele in practical application). The Ms and Mf-specific markers developed here will facilitate the breeding for new elite homozygous sterile lines and allow further research on map-based cloning of the Ms gene.


Subject(s)
Brassica napus/genetics , Alleles , Base Sequence , DNA, Plant/genetics , Fertility/genetics , Genes, Dominant , Genes, Plant , Genetic Linkage , Genetic Markers , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL