Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207218

ABSTRACT

Resin-based composite materials have been widely used in restorative dental materials due to their aesthetic, mechanical, and physical properties. However, they still encounter clinical shortcomings mainly due to recurrent decay that develops at the composite-tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal this interface, but the adhesive seal is inherently defective and readily damaged by acids, enzymes, and oral fluids. Bacteria infiltrate the resulting gaps at the composite-tooth interface and bacterial by-products demineralize the tooth and erode the adhesive. These activities lead to wider and deeper gaps that provide an ideal environment for bacteria to proliferate. This complex degradation process mediated by several biological and environmental factors damages the tooth, destroys the adhesive seal, and ultimately, leads to failure of the composite restoration. This paper describes a co-tethered dual peptide-polymer system to address composite-tooth interface vulnerability. The adhesive system incorporates an antimicrobial peptide to inhibit bacterial attack and a hydroxyapatite-binding peptide to promote remineralization of damaged tooth structure. A designer spacer sequence was incorporated into each peptide sequence to not only provide a conjugation site for methacrylate (MA) monomer but also to retain active peptide conformations and enhance the display of the peptides in the material. The resulting MA-antimicrobial peptides and MA-remineralization peptides were copolymerized into dental adhesives formulations. The results on the adhesive system composed of co-tethered peptides demonstrated both strong metabolic inhibition of S. mutans and localized calcium phosphate remineralization. Overall, the result offers a reconfigurable and tunable peptide-polymer hybrid system as next-generation adhesives to address composite-tooth interface vulnerability.


Subject(s)
Anti-Bacterial Agents/chemistry , Dental Cements/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Composite Resins/chemistry , Composite Resins/pharmacology , Dental Cements/pharmacology , Methacrylates/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Streptococcus mutans/drug effects , Tooth Remineralization/methods
2.
J Mech Behav Biomed Mater ; 120: 104563, 2021 08.
Article in English | MEDLINE | ID: mdl-33940485

ABSTRACT

The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.


Subject(s)
Dental Bonding , Tissue Adhesives , Animals , Cattle , Composite Resins , Dentin , Dentin-Bonding Agents , Humans , Materials Testing , Resin Cements , Surface Properties , Tensile Strength
3.
J Mech Behav Biomed Mater ; 113: 104135, 2021 01.
Article in English | MEDLINE | ID: mdl-33160267

ABSTRACT

Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.


Subject(s)
Adhesives , Dental Bonding , Composite Resins , Dental Restoration, Permanent , Dentin , Resin Cements
4.
Polymers (Basel) ; 12(9)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932724

ABSTRACT

The inherent degradation property of most dental resins in the mouth leads to the long-term release of degradation by-products at the adhesive/tooth interface. The by-products increase the virulence of cariogenic bacteria, provoking a degradative positive-feedback loop that leads to physicochemical and mechanical failure. Photoinduced free-radical polymerization and sol‒gel reactions have been coupled to produce a novel autonomous-strengthening adhesive with enhanced hydrolytic stability. This paper investigates the effect of network structure on time-dependent mechanical properties in adhesives with and without autonomous strengthening. Stress relaxation was conducted under 0.2% strain for 8 h followed by 40 h recovery in water. The stress‒time relationship is analyzed by nonlinear least-squares data-fitting. The fitted Prony series predicts the sample's history under monotonic loading. Results showed that the control failed after the first loading‒unloading‒recovery cycle with permanent deformation. While for the experimental sample, the displacement was almost completely recovered and the Young's modulus increased significantly after the first test cycle. The experimental polymer exhibited higher degree of conversion, lower leachate, and time-dependent stiffening characteristics. The autonomous-strengthening reaction persists in the aqueous environment leading to a network with enhanced resistance to deformation. The results illustrate a rational approach for tuning the viscoelasticity of durable dental adhesives.

5.
ACS Appl Polym Mater ; 2(3): 1134-1144, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-33834166

ABSTRACT

Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.

6.
Dent Mater ; 36(2): 284-295, 2020 02.
Article in English | MEDLINE | ID: mdl-31806495

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate a new synthesized multifunctional monomer, aminosilane functionalized methacrylate (ASMA), containing polymerizable methacrylate, tertiary amine, and methoxysilane functionalities in dental adhesive formulations, and to investigate the polymerization kinetics, leachates, thermal and mechanical properties of copolymers. METHODS: Adhesive contained HEMA/BisGMA (45/55, w/w) was used as a control, and mixtures based on HEMA/BisGMA/ASMA at the mass ratio of 45/(55-x)/x were used as experimental adhesive. Adhesives were characterized with regard to water miscibility, photo-polymerization behavior (Fourier transform infrared spectroscopy, FTIR), leached co-monomers (high performance liquid chromatography, HPLC), thermal properties (modulated differential scanning calorimeter, MDSC), and mechanical properties (dynamic mechanical analyzer, DMA). Stress relaxation times and the corresponding moduli, obtained from stress relaxation tests, are used in a simulated linear loading case. RESULTS: As compared to the control, ASMA-containing adhesives showed higher water miscibility, lower viscosity, improved monomer-to-polymer conversion, significantly greater Tg and rubbery modulus. HPLC results indicated a substantial reduction of leached HEMA (up to 85wt%) and BisGMA (up to 55wt%) in ethanol. The simulation reveals that the ASMA-containing adhesive becomes substantially stiffer than the control. SIGNIFICANCE: ASMA monomer plays multiple roles, i.e. it serves as both a co-initiator and crosslinker while also providing autonomous strengthening and enhanced hydrolytic stability in the adhesive formulations. This multifunctional monomer offers significant promise for improving the durability of the adhesive at the composite/tooth interface.


Subject(s)
Dental Cements , Methacrylates , Hydrolysis , Materials Testing , Polymerization
7.
J Biomed Mater Res B Appl Biomater ; 107(8): 2673-2683, 2019 11.
Article in English | MEDLINE | ID: mdl-30895695

ABSTRACT

Nearly 100 million of the 170 million composite and amalgam restorations placed annually in the United States are replacements for failed restorations. The primary reason both composite and amalgam restorations fail is recurrent decay, for which composite restorations experience a 2.0-3.5-fold increase compared to amalgam. Recurrent decay is a pernicious problem-the standard treatment is replacement of defective composites with larger restorations that will also fail, initiating a cycle of ever-larger restorations that can lead to root canals, and eventually, to tooth loss. Unlike amalgam, composite lacks the inherent capability to seal discrepancies at the restorative material/tooth interface. The low-viscosity adhesive that bonds the composite to the tooth is intended to seal the interface, but the adhesive degrades, which can breach the composite/tooth margin. Bacteria and bacterial by-products such as acids and enzymes infiltrate the marginal gaps and the composite's inability to increase the interfacial pH facilitates cariogenic and aciduric bacterial outgrowth. Together, these characteristics encourage recurrent decay, pulpal damage, and composite failure. This review article examines key biological and physicochemical interactions involved in the failure of composite restorations and discusses innovative strategies to mitigate the negative effects of pathogens at the adhesive/dentin interface. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2466-2475, 2019.


Subject(s)
Adhesives , Dental Materials , Dental Restoration, Permanent , Dentin , Adhesives/chemistry , Adhesives/therapeutic use , Dental Materials/chemistry , Dental Materials/therapeutic use , Dentin/chemistry , Dentin/metabolism , Humans
8.
Appl Sci (Basel) ; 9(3)2019 Feb.
Article in English | MEDLINE | ID: mdl-33542835

ABSTRACT

The most common cause for dental composite failures is secondary caries due to invasive bacterial colonization of the adhesive/dentin (a/d) interface. Innate material weakness often lead to an insufficient seal between the adhesive and dentin. Consequently, bacterial by-products invade the porous a/d interface leading to material degradation and dental caries. Current approaches to achieve antibacterial properties in these materials continue to raise concerns regarding hypersensitivity and antibiotic resistance. Herein, we have developed a multi-faceted, bio-functionalized approach to overcome the vulnerability of such interfaces. An antimicrobial adhesive formulation was designed using a combination of antimicrobial peptide and a ε-polylysine resin system. Effector molecules boasting innate immunity are brought together with a biopolymer offering a two-fold biomimetic design approach. The selection of ε-polylysine was inspired due to its non-toxic nature and common use as food preservative. Biomolecular characterization and functional activity of our engineered dental adhesive formulation were assessed and the combinatorial formulation demonstrated significant antimicrobial activity against Streptococcus mutans. Our antimicrobial peptide-hydrophilic adhesive hybrid system design offers advanced, biofunctional properties at the critical a/d interface.

9.
Acta Biomater ; 83: 130-139, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30366133

ABSTRACT

Resin-based composite has overtaken dental amalgam as the most popular material for direct restorative dentistry. In spite of this popularity the clinical lifetime of composite restorations is threatened by recurrent decay. Degradation of the adhesive leads to gaps at the composite/tooth interface-bacteria, bacterial by-products and fluids infiltrate the gaps leading to recurrent decay and composite restoration failure. The durability of resin-dentin bonds is a major problem. We address this problem by synthesizing silyl-functionalized BisGMA (e.g., silyl-BisGMA), formulating dental adhesives with the new monomer and determining the physicochemical properties and leaching characteristics of the silyl-BisGMA adhesives. Silyl-BisGMA was synthesized by stoichiometric amounts of BisGMA and 3-isocyanatopropyl trimethoxysilane (IPTMS). The control adhesive was a mixture based on HEMA/BisGMA (45/55, w/w). In the experimental formulations, BisGMA was partially or completely replaced by silyl-BisGMA. Water miscibility, polymerization behavior (Fourier transform infrared spectroscopy, FTIR), thermal property (modulated differential scanning calorimetry, MDSC), mechanical properties in dry and wet conditions (dynamic mechanical analysis, DMA), and leached species (HPLC) were investigated. Data from all tests were submitted to appropriate statistical analysis (α = 0.05). Silyl-BisGMA-containing adhesives exhibited comparable water miscibility, lower viscosities, and significantly improved degree of conversion of CC bond as compared to the control. After 4 weeks aqueous aging, the glass transition temperature and rubbery moduli of the experimental copolymers were significantly greater than the control (p < 0.05). HPLC results indicated a substantial reduction of leached HEMA (up to 99 wt%) and BisGMA (up to 90 wt%). By introducing silyl-functional group, the new BisGMA derivative exhibited potential as a monomer that can lead to dental adhesives with improved mechanical properties and reduced leaching under conditions relevant to the oral environment. STATEMENT OF SIGNIFICANCE: The low-viscosity adhesive that bonds the composite to the tooth (enamel and dentin) is intended to seal and stabilize the composite/tooth interface, but it degrades leading to a breach at the composite/tooth margin. As the most popular crosslinking monomer in adhesives, Bisphenol A-glycerolate dimethacrylate (BisGMA) has limitations, e.g. susceptible to hydrolysis and concomitant property degradation. A methoxysilyl-functionalized BisGMA derivative (silyl-BisGMA) was introduced in this work to respond to these limitations. Our results indicated that by introducing silyl-BisGMA, higher crosslinked networks were obtained without sacrificing the homogeneity, and the leached amount of HEMA was reduced up to 99%. This novel resin offers potential benefits including prolonging the functional lifetime of dental resin materials.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/chemistry , Dental Cements/chemistry
10.
Biointerphases ; 13(6): 061004, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558430

ABSTRACT

Dentin adhesive systems for composite tooth restorations are composed of hydrophilic/hydrophobic monomers, solvents, and photoinitiators. The adhesives undergo phase separation and concomitant compositional change during their application in the wet oral environment; phase separation compromises the quality of the hybrid layer in the adhesive/dentin interface. In this work, the adhesive composition in the hybrid layer can be represented using the phase boundaries of a ternary phase diagram for the hydrophobic monomer/hydrophilic monomer/water system. The polymer phases, previously unaccounted for, play an important role in determining the mechanical behavior of the bulk adhesive, and the chemomechanical properties of the phases are intimately related to the effects produced by differences in the hydrophobic-hydrophilic composition. As the composition of the polymer phases varies from hydrophobic-rich to hydrophilic-rich, the amount of the adsorbed water and the nature of polymer-water interaction vary nonlinearly and strongly correlate with the change in elastic moduli under wet conditions. The failure strain, loss modulus, and glass transition temperature vary nonmonotonically with composition and are explained based upon primary and secondary transitions observed in dynamic mechanical testing. Due to the variability in composition, the assignment of mechanical properties and the choice of suitable constitutive models for polymer phases in the hybrid layer are not straightforward. This work investigates the relationship between composition and chemomechanical properties of the polymer phases formed on the water-adhesive phase boundary using quasistatic and dynamic mechanical testing, mass transfer experiments, and vibrational spectroscopy.


Subject(s)
Dental Cements/chemistry , Dental Cements/pharmacology , Polymers/chemistry , Polymers/pharmacology , Chemical Phenomena , Mechanical Phenomena , Quantitative Structure-Activity Relationship
11.
Dent Mater ; 34(11): 1652-1660, 2018 11.
Article in English | MEDLINE | ID: mdl-30201287

ABSTRACT

OBJECTIVES: The objective of this study was to explore the effect of lysine integration to dental adhesives with respect to the polymerization kinetics, neutralization capacities in the acidic microenvironment, dynamic mechanical properties, and thermal properties. MATERIALS AND METHOD: Lysine was incorporated into liquid resin formulations at 2.5 and 5.0wt % with additional water/ethanol co-solvents. The co-monomer system contained 2-hydroxyethyl-methacrylate (HEMA) and Bisphenol A glycerolate dimethacrylate (BisGMA) with a mass ratio of 45/55. The kinetics of photopolymerization, neutralization capacities, lysine-leaching, dynamic mechanical properties and thermal properties of the control and experimental adhesives were analyzed. RESULTS: The degree of conversion of the experimental adhesive was increased substantially at 2.5wt% lysine as compared to the control. The experimental polymers provided acute neutralization of the acidic microenvironment. Approximately half of the lysine was released from the polymer network within one month. Under dry conditions and physiologic temperatures, the incorporation of lysine did not compromise the storage modulus. Comparison of the thermal properties suggests that the more compact structure of the control adhesive inhibits movement of the polymer chains resulting in increased Tg. SIGNIFICANCE: Incorporating lysine in the adhesive formulations led to promising results regarding modulating pH, which may serve as one aspect of a multi-spectrum approach for enhancing the durability of composite restorations. The results provide insight and lay a foundation for incorporating amino acids or peptides into adhesive formulations for pH modulation or desired bioactivity at the interfacial margin between the composite and tooth.


Subject(s)
Dental Cements/chemistry , Lysine/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Ethanol/chemistry , Hydrogen-Ion Concentration , Kinetics , Materials Testing , Methacrylates/chemistry , Polymerization , Polymers/chemistry
12.
Acta Biomater ; 67: 111-121, 2018 02.
Article in English | MEDLINE | ID: mdl-29229545

ABSTRACT

Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives. STATEMENT OF SIGNIFICANCE: The interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives.


Subject(s)
Cross-Linking Reagents/chemistry , Dental Cements/chemistry , Materials Testing/methods , Buffers , Chromatography, High Pressure Liquid , Dental Bonding , Elastic Modulus , Hydrogen-Ion Concentration , Kinetics , Polymerization , Silanes/chemistry , Water/chemistry , Wettability
13.
Dent Mater ; 33(5): 564-574, 2017 05.
Article in English | MEDLINE | ID: mdl-28366234

ABSTRACT

OBJECTIVE: To investigate the polymerization kinetics, neutralization behavior, and mechanical properties of amine-functionalized dental adhesive cured in the presence of zwitterionic monomer, methacryloyloxyethyl phosphorylcholine (MPC). METHODS: The control adhesive was a mixture based on HEMA/BisGMA/2-N-morpholinoethyl methacrylate (MEMA) (40/30/30, w/w/w). The control and experimental formulations containing MPC were characterized with regard to water miscibility of liquid resins, photopolymerization kinetics, water sorption and solubility, dynamic mechanical properties and leachables from the polymers (aged in ethanol). The neutralization behavior of the adhesives was determined by monitoring the pH of lactic acid (LA) solution. RESULTS: The water miscibility decreased with increasing MPC amount. The water sorption of experimental copolymer specimen was greater than the control. The addition of 8wt% water led to improved photo-polymerization efficiency for experimental formulations at MPC of 2.5 and 5wt%, and significant reduction in the cumulative amounts of leached HEMA, BisGMA, and MEMA, i.e. 90, 60 and 50% reduction, respectively. The neutralization rate of MPC-containing adhesive was faster than control. The optimal MPC concentration in the formulations was 5wt%. SIGNIFICANCE: Incompatibility between MEMA and MPC led to a decrease in water miscibility of the liquid resins. Water (at 8wt%) in the MPC-containing formulations (2.5-5wt% MPC) led to higher DC, faster RPmax and significant reduction in leached HEMA, BisGMA, and MEMA. The neutralization rate was enhanced with the addition of MPC in the amine-containing formulation. Promoting the neutralization capability of dentin adhesives could play an important role in reducing recurrent decay at the composite/tooth interface.


Subject(s)
Dental Cements , Methacrylates , Morpholines , Bisphenol A-Glycidyl Methacrylate , Materials Testing , Polymerization , Water
14.
RSC Adv ; 6(57): 52434-52447, 2016.
Article in English | MEDLINE | ID: mdl-27774144

ABSTRACT

A self-strengthening methacrylate-based dental adhesive system was developed by introducing an epoxy cyclohexyl trimethoxysilane (TS) which contains both epoxy and methoxysilyl functional groups. The experimental formulation, HEMA/BisGMA/TS (22.5/27.5/50, wt%), was polymerized by visible-light. Real-time Fourier transform infrared spectroscopy (FTIR) was used to investigate in situ the free radical polymerization of methacrylate, ring-opening cationic polymerization of epoxy, and photoacid-induced sol-gel reactions. Among the three simultaneous reactions, the reaction rate of the free radical polymerization was the highest and the hydrolysis/condensation rate was the lowest. With 40s-irradiation, the degrees of conversion of the double bond and epoxy groups at 600 s were 73.2±1.2%, 87.9±2.4%, respectively. Hydrolysis of the methoxysilyl group was initially <5%, and increased gradually to about 50% after 48 h dark storage. Photoacids generated through the visible-light-induced reaction were effective in catalyzing both epoxy ring-opening polymerization and methoxysilyl sol-gel reaction. The mechanical properties of copolymers made with TS concentrations from 5 to 35 wt% were obtained using dynamic mechanical analysis (DMA). In wet conditions, the storage moduli at 70 °C and glass transition temperature were significantly higher than that of the control (p<0.05); these properties increased with TS concentration and storage time. The post reaction of hydrolysis/condensation of alkoxysilane could provide persistent strengthening whether in a neutral or acidic environment and these characteristics could lead to enhanced mechanical properties in the oral environment. The cumulative amount of leached species decreased significantly in the TS-containing copolymers. These results provide valuable information for the development of dental adhesives with reduced leaching of methacrylate monomers and enhanced mechanical properties under the wet, oral environment.

15.
JOM (1989) ; 68(4): 1090-1099, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27158215

ABSTRACT

The polymerization kinetics of physically separated hydrophobic- and hydrophilic-rich phases of a model dental adhesive have been investigated. The two phases were prepared from neat resin containing 2-hydroxyethyl methacrylate (HEMA) and bisphenol A glycerolate dimethacrylate (BisGMA) in the ratio of 45:55 (wt/wt). Neat resins containing various combinations of popular photo-initiating compounds, e.g., camphoquinone (CQ), ethyl 4-(dimethylamino)benzoate (EDMAB), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and diphenyliodonium hexafluorophosphate (DPIHP) were prepared. To obtain the two phases 33 wt% of deuterium oxide (D2O) was added to the neat resins. This amount of D2O exceeded the miscibility limit for the resins. The concentration of each component of the photo-initiating system in the two phases was quantified by HPLC. When combined with CQ, DMAEMA is less efficient as a co-initiator compared to EDMAB. The addition of DPIHP as the third component into either CQ/EDMAB or CQ/DMAEMA photo-initiating systems leads to comparable performance in both the hydrophobic- and hydrophilic-rich phases. The addition of the iodonium salt significantly improved the photopolymerization of the hydrophilic-rich phase; the hydrophilic-rich phase exhibited extremely poor polymerization when the iodonium salt was not included in the formulation. The partition concentration of EDMAB in the hydrophilic-rich phase was significantly lower than that of DMAEMA or DPIHP. This study indicates the need for a combination of hydrophobic/hydrophilic photosensitizer and addition of iodonium salt to improve polymerization within the hydrophilic-rich phase of the dental adhesive.

16.
Acta Biomater ; 35: 138-52, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26883773

ABSTRACT

Chemical and enzymatic hydrolysis provoke a cascade of events that undermine methacrylate-based adhesives and the bond formed at the tooth/composite interface. Infiltration of noxious agents, e.g. enzymes, bacteria, and so forth, into the spaces created by the defective bond will ultimately lead to failure of the composite restoration. This paper reports a novel, synthetic resin that provides enhanced hydrolytic stability as a result of intrinsic reinforcement of the polymer network. The behavior of this novel resin, which contains γ-methacryloxyproyl trimethoxysilane (MPS) as its Si-based compound, is reminiscent of self-strengthening properties found in nature. The efforts in this paper are focused on two essential aspects: the visible-light irradiation induced (photoacid-induced) sol-gel reaction and the mechanism leading to intrinsic self-strengthening. The FTIR band at 2840cm(-1) corresponding to CH3 symmetric stretch in -Si-O-CH3 was used to evaluate the sol-gel reaction. Results from the real-time FTIR indicated that the newly developed resin showed a limited sol-gel reaction (<5%) during visible-light irradiation, but after 48h dark storage, the reaction was over 65%. The condensation of methoxysilane mainly occurred under wet conditions. The storage moduli and glass transition temperature of the copolymers increased in wet conditions with the increasing MPS content. The cumulative amounts of leached species decreased significantly when the MPS-containing adhesive was used. The results suggest that the polymethacrylate-based network, which formed first as a result of free radical initiated polymerization, retarded the photoacid-induced sol-gel reaction. The sol-gel reaction provided a persistent, intrinsic reinforcement of the polymer network in both neutral and acidic conditions. This behavior led to enhanced mechanical properties of the dental adhesives under conditions that simulate the wet, oral environment. STATEMENT OF SIGNIFICANCE: A self-strengthening dental adhesive system was developed through a dual curing process, which involves the free radical photopolymerization followed by slow hydrolysis and condensation (photoacid-induced sol-gel reaction) of alkoxylsilane groups. The concept of "living" photoacid-induced sol-gel reaction with visible-light irradiation was confirmed in the polymer. The sol-gel reaction was retarded by the polymethacrylate network, which was generated first; the network extended the life and retained the activity of silanol groups. The self-strengthening behavior was evaluated by monitoring the mechanical properties of the hybrid copolymers under wet conditions. The present research demonstrates the sol-gel reaction in highly crosslinked network as a potentially powerful strategy to prolong the functional lifetime of engineered biomaterials in wet environments.


Subject(s)
Biomimetic Materials/chemistry , Dental Cements/chemistry , Materials Testing , Dentin/chemistry , Elastic Modulus , Polymerization , Resins, Synthetic/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry
17.
Dent Mater ; 32(4): 519-28, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26764171

ABSTRACT

OBJECTIVES: A novel tertiary amine compound containing three methacrylate-urethane groups was synthesized for application in dentin adhesives. The synthesis, photopolymerization kinetics, and leaching were examined in an earlier study using this novel compound as the co-initiator (0.5 and 1.75wt% based on the total resin mass). The objective of this work was to investigate the potential of TUMA (8-(2-(((2-(methacryloyloxy)ethyl)carbamoyl)oxy)propyl)-6,10-dimethyl-4,12-dioxo-5,11-dioxa-3,8,13-triazapentadecane-1,15-diyl bis(2-methylacrylate)) to serve simultaneously as a co-initiator and co-monomer (15-45wt% based on the total resin mass) in dentin adhesive formulations. The polymerization kinetics, water sorption and dynamic mechanical properties of these novel formulations were determined. MATERIALS AND METHOD: The monomer system contained Bisphenol A glycerolate dimethacrylate (BisGMA), 2-hydroxyethylmethacrylate (HEMA) and TUMA (synthesized in our lab) at the mass ratio of 45/(55-x)/x. Two photoinitiator (PI) systems were compared. One initiator system contains three components: camphorquinone (CQ), diphenyliodonium hexafluorophosphate (DPIHP) and ethyl-4-(dimethylamino) benzoate (EDMAB) and the second initiator system contains CQ and DPIHP. The control adhesive formulations are: C0-3: HEMA/BisGMA 45/55 (w/w) and 3-component PI and C0-2: HEMA/BisGMA 45/55 (w/w) and 2-component PI. These controls were used as a comparison to the experimental adhesive resins (Ex-3 or Ex-2), in which x represents the weight percentage of synthesized co-monomer (TUMA) to replace part of BisGMA. The control and experimental adhesive formulations were photo-polymerized and compared with regard to the degree of conversion (DC), polymerization rate (Rp), water sorption and dynamic mechanical analysis (DMA) under both dry and wet conditions. RESULTS: C0-3 and Ex-3 formulations had similar DC, while the DC of Ex-2 formulation was higher than C0-2. The DC was similar when comparing the two- component with the three-component photoinitiator system when TUMA was used at the same concentration. DMA under dry conditions shows higher rubbery storage modulus for all experimental formulations, while storage modulus at rubbery region under wet conditions was decreased as compared with control (C0-3). There was no statistically significant difference for the DMA results under both dry and wet conditions when comparing two- and three-component initiator systems with the same TUMA concentration. SIGNIFICANCE: The newly synthesized TUMA could serve simultaneously as a co-monomer and co-initiator in the absence of commercial co-initiator. This study provides information for the future development of new co-monomer/co-initiator for dentin adhesives and dental composites.


Subject(s)
Dental Cements/chemistry , Dentin/chemistry , Light-Curing of Dental Adhesives , Methacrylates/chemistry , Photoinitiators, Dental/chemistry , Amines/chemistry , Biphenyl Compounds/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Camphor/analogs & derivatives , Camphor/chemistry , Dental Cements/chemical synthesis , Materials Testing , Onium Compounds/chemistry , Polymerization , Tensile Strength , para-Aminobenzoates/chemistry
18.
Dent Mater ; 32(1): 102-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26616688

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the polymerization behavior of a model dentin adhesive with tris(trimethylsilyl)silane (TTMSS) as a co-initiator, and to investigate the polymerization kinetics and mechanical properties of copolymers in dry and wet conditions. METHODS: A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a model dentin adhesive. The photoinitiator system included camphorquinone (CQ) as the photosensitizer and the co-initiator was ethyl-4-(dimethylamino) benzoate (EDMAB) or TTMSS. Iodonium salt, diphenyliodonium hexafluorophosphate (DPIHP) serving as a catalyst, was selectively added into the adhesive formulations. The control and the experimental formulations were characterized with regard to the degree of conversion (DC) and dynamic mechanical properties under dry and wet conditions. RESULTS: In two-component photoinitiator system (CQ/TTMSS), with an increase of TTMSS concentration, the polymerization rate and DC of CC double bond increased, and showed a dependence on the irradiation time and curing light intensity. The copolymers that contained the three-component photoinitiator system (CQ/TTMSS/DPIHP) showed similar dynamic mechanical properties, under both dry and wet conditions, to the EDMAB-containing system. SIGNIFICANCE: The DC of formulations using TTMSS as co-initiator showed a strong dependence on irradiation time. With the addition of TTMSS, the maximum polymerization rate can be adjusted and the network structure became more homogenous. The results indicated that the TTMSS could be used as a substitute for amine-type co-initiator in visible-light induced free radical polymerization of methacrylate-based dentin adhesives.


Subject(s)
Dental Cements/chemistry , Photoinitiators, Dental/chemistry , Silanes/chemistry , Biphenyl Compounds/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Camphor/analogs & derivatives , Camphor/chemistry , Iodine/chemistry , Kinetics , Light-Curing of Dental Adhesives , Onium Compounds/chemistry , Polymerization
19.
J Biomed Mater Res B Appl Biomater ; 104(5): 841-52, 2016 07.
Article in English | MEDLINE | ID: mdl-25953619

ABSTRACT

Resin chemistries for dental composite are evolving as noted by the introduction of silorane-based composites in 2007. This shift in the landscape from methacrylate-based composites has fueled the quest for versatile methacrylate-silorane adhesives. The objective of this study was to evaluate the polymerization behavior and structure/property relationships of methacrylate-silorane hybrid systems. Amine compound ethyl-4-(dimethylamino) benzoate (EDMAB) or silane compound tris(trimethylsilyl) silane (TTMSS) was selected as coinitiators. The mechanical properties of the copolymer were improved significantly at low concentrations (15, 25, or 35 wt %) of silorane when EDMAB was used as coinitiator. The rubbery moduli of these experimental copolymers were increased by up to 260%, compared with that of the control (30.8 ± 1.9 MPa). Visible phase separation appeared in these formulations if the silorane concentrations in the formulations were 50-75 wt %. The use of TTMSS as coinitiator decreased the phase separation, but there was a concomitant decrease in mechanical properties. In the neat methacrylate formulations, the maximum rates of free-radical polymerization with EDMAB or TTMSS were 0.28 or 0.06 s(-1) , respectively. In the neat silorane resin, the maximum rates of cationic ring-opening polymerization with EDMAB or TTMSS were 0.056 or 0.087 s(-1) , respectively. The phase separation phenomenon may be attributed to differences in the rates of free-radical polymerization of methacrylates and cationic ring-opening polymerization of silorane. In the hybrid systems, free-radical polymerization initiated with EDMAB led to higher crosslink density and better mechanical properties under dry/wet conditions. These beneficial effects were, however, associated with an increase in heterogeneity in the network structure. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 841-852, 2016.


Subject(s)
Methacrylates/chemistry , Models, Chemical , Photochemical Processes , Silorane Resins/chemistry
20.
RSC Adv ; 5(95): 77791-77802, 2015.
Article in English | MEDLINE | ID: mdl-26613015

ABSTRACT

The objective of this study was to determine the influence of water on the polymerization kinetics, crosslinking structure and dynamic mechanical properties of methacrylate/epoxy polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid polymerization. Water-containing formulations were prepared by adding ~4-7 wt% D2O depending on the water miscibility of monomer resins. The water-containing adhesives were compared with the adhesives photo-cured in the absence of water. The results show an improved degree of conversion for both methacrylates and epoxy by adding water. The rate of the epoxy cationic ring-opening reaction is increased while the rate of free radical polymerization is decreased in the presence of water. The decreased crosslinking density noted in the presence of water suggests that the chain transfer reaction between water and epoxy competes with the hydroxyl-based chain transfer mechanism. There is potential application of this visible-light initiated hybrid polymerization in biomaterials, e.g. dental restorations and tissue engineering scaffolds.

SELECTION OF CITATIONS
SEARCH DETAIL
...