Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1408312, 2024.
Article in English | MEDLINE | ID: mdl-38828409

ABSTRACT

Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.


Subject(s)
Disease Progression , Interleukin-6 , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Interleukin-6/metabolism , Animals , Signal Transduction , Biomarkers, Tumor/metabolism , Prognosis
2.
Acad Radiol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38614827

ABSTRACT

RATIONALE AND OBJECTIVES: Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS: This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS: Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION: Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.

3.
ACS Omega ; 9(16): 18358-18365, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680307

ABSTRACT

The Al0.5CoCrFeNi high-entropy alloy powder was produced by using a plasma rotating electrode process. The morphology, microstructure, and physical properties of the powder were characterized. The powder exhibited a smooth surface and a narrow particle size distribution with a single peak. The relationships between particle size and secondary dendrite arm space as well as cooling rate were evaluated as follows: λ = 0.0105d + 0.062 and vc = 4.34 × 10-5d-2 + 2.62 × 10-2d-3/2, respectively. The Al0.5CoCrFeNi powder mainly consisted of fcc + bcc phases. As the powder particle size decreased, the microstructure of the powder changed from dendritic to columnar or equiaxed, along with a decrease in the fcc content and an increase in the bcc content. The tap density (4.76 g cm-3), flowability (15.01 s × 50 g-1), oxygen content (<300 ppm), and sphericity (>94%) of the powder indicated suitability for additive manufacturing.

4.
Biomed Pharmacother ; 174: 116470, 2024 May.
Article in English | MEDLINE | ID: mdl-38565061

ABSTRACT

ERCC2 plays a pivotal role in DNA damage repair, however, its specific function in cancer remains elusive. In this study, we made a significant breakthrough by discovering a substantial upregulation of ERCC2 expression in glioblastoma (GBM) tumor tissue. Moreover, elevated levels of ERCC2 expression were closely associated with poor prognosis. Further investigation into the effects of ERCC2 on GBM revealed that suppressing its expression significantly inhibited malignant growth and migration of GBM cells, while overexpression of ERCC2 promoted tumor cell growth. Through mechanistic studies, we elucidated that inhibiting ERCC2 led to cell cycle arrest in the G0/G1 phase by blocking the CDK2/CDK4/CDK6/Cyclin D1/Cyclin D3 pathway. Notably, we also discovered a direct link between ERCC2 and CDK4, a critical protein in cell cycle regulation. Additionally, we explored the potential of TRAIL, a low-toxicity death ligand cytokine with anticancer properties. Despite the typical resistance of GBM cells to TRAIL, tumor cells undergoing cell cycle arrest exhibited significantly enhanced sensitivity to TRAIL. Therefore, we devised a combination strategy, employing TRAIL with the nanoparticle DMC-siERCC2, which effectively suppressed the GBM cell proliferation and induced apoptosis. In summary, our study suggests that targeting ERCC2 holds promise as a therapeutic approach to GBM treatment.


Subject(s)
Cell Cycle Checkpoints , Cell Proliferation , Glioblastoma , Nanoparticles , TNF-Related Apoptosis-Inducing Ligand , Xeroderma Pigmentosum Group D Protein , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Nanoparticles/chemistry , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Cell Proliferation/drug effects , Xeroderma Pigmentosum Group D Protein/metabolism , Xeroderma Pigmentosum Group D Protein/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Animals , Apoptosis/drug effects , Mice, Nude , Male
5.
Neurochem Int ; 175: 105718, 2024 May.
Article in English | MEDLINE | ID: mdl-38490487

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Recent evidence suggests that gamma-aminobutyric acid B (GABAB) receptor-mediated inhibition is a major contributor to AD pathobiology, and GABAB receptors have been hypothesized to be a potential target for AD treatment. The aim of this study is to determine how GABAB regulation alters cognitive function and brain activity in an AD mouse model. Early, middle and late stage (8-23 months) amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic mice were used for the study. The GABAB agonist baclofen (1 and 2.5 mg/kg, i. p.) and the antagonist phaclofen (0.5 mg/kg, i. p.) were used. Primarily, we found that GABAB activation was able to improve spatial and/or working memory performance in early and late stage AD animals. In addition, GABAB activation and inhibition could regulate global and local EEG oscillations in AD animals, with activation mainly regulating low-frequency activity (delta-theta bands) and inhibition mainly regulating mid- and high-frequency activity (alpha-gamma bands), although the regulated magnitude at some frequencies was reduced in AD. The cognitive improvements in AD animals may be explained by the reduced EEG activity in the theta frequency band (2-4 Hz). This study provides evidence for a potential therapeutic effect of baclofen in the elderly AD brain and for GABAB receptor-mediated inhibition as a potential therapeutic target for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Mice , Animals , Aged , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Baclofen/pharmacology , Presenilin-1/genetics , Receptors, GABA-B , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , gamma-Aminobutyric Acid , Cognition , Electroencephalography , Disease Models, Animal
6.
Proc Natl Acad Sci U S A ; 119(17): e2106902119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35439061

ABSTRACT

Meiotic crossover (CO) recombination is tightly regulated by chromosome architecture to ensure faithful chromosome segregation and to reshuffle alleles between parental chromosomes for genetic diversity of progeny. However, regulation of the meiotic chromosome loop/axis organization is poorly understood. Here, we identify a molecular pathway for axis length regulation. We show that the cohesin regulator Pds5 can interact with proteasomes. Meiosis-specific depletion of proteasomes and/or Pds5 results in a similarly shortened chromosome axis, suggesting proteasomes and Pds5 regulate axis length in the same pathway. Protein ubiquitination is accumulated in pds5 and proteasome mutants. Moreover, decreased chromosome axis length in these mutants can be largely rescued by decreasing ubiquitin availability and thus decreasing protein ubiquitination. Further investigation reveals that two ubiquitin E3 ligases, SCF (Skp­Cullin­F-box) and Ufd4, are involved in this Pds5­ubiquitin/proteasome pathway to cooperatively control chromosome axis length. These results support the hypothesis that ubiquitination of chromosome proteins results in a shortened chromosome axis, and cohesin­Pds5 recruits proteasomes onto chromosomes to regulate ubiquitination level and thus axis length. These findings reveal an unexpected role of the ubiquitin­proteasome system in meiosis and contribute to our knowledge of how Pds5 regulates meiotic chromosome organization. A conserved regulatory mechanism probably exists in higher eukaryotes.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Chromosomes/metabolism , Meiosis/genetics , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ubiquitin/genetics
7.
Nucleic Acids Res ; 49(16): 9353-9373, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34417612

ABSTRACT

Meiotic recombination is integrated into and regulated by meiotic chromosomes, which is organized as loop/axis architecture. However, the regulation of chromosome organization is poorly understood. Here, we show Esa1, the NuA4 complex catalytic subunit, is constitutively expressed and localizes on chromatin loops during meiosis. Esa1 plays multiple roles including homolog synapsis, sporulation efficiency, spore viability, and chromosome segregation in meiosis. Detailed analyses show the meiosis-specific depletion of Esa1 results in decreased chromosome axis length independent of another axis length regulator Pds5, which further leads to a decreased number of Mer2 foci, and consequently a decreased number of DNA double-strand breaks, recombination intermediates, and crossover frequency. However, Esa1 depletion does not impair the occurrence of the obligatory crossover required for faithful chromosome segregation, or the strength of crossover interference. Further investigations demonstrate Esa1 regulates chromosome axis length via acetylating the N-terminal tail of histone H4 but not altering transcription program. Therefore, we firstly show a non-chromosome axis component, Esa1, acetylates histone H4 on chromatin loops to regulate chromosome axis length and consequently recombination frequency but does not affect the basic meiotic recombination process. Additionally, Esa1 depletion downregulates middle induced meiotic genes, which probably causing defects in sporulation and chromosome segregation.


Subject(s)
Cell Cycle Proteins/genetics , Histone Acetyltransferases/genetics , Histones/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/genetics , Acetylation , Animals , Caenorhabditis elegans/genetics , Chromatin/genetics , Chromosome Pairing/genetics , Chromosome Segregation/genetics , Crossing Over, Genetic/genetics , DNA Breaks, Double-Stranded , Homologous Recombination/genetics , Saccharomyces cerevisiae/genetics , Spores, Fungal/genetics , Spores, Fungal/growth & development , Synaptonemal Complex/genetics
8.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33712462

ABSTRACT

Meiotic chromosomes have a loop/axis architecture, with axis length determining crossover frequency. Meiosis-specific Pds5 depletion mutants have shorter chromosome axes and lower homologous chromosome pairing and recombination frequency. However, it is poorly understood how Pds5 coordinately regulates these processes. In this study, we show that only ~20% of wild-type level of Pds5 is required for homolog pairing and that higher levels of Pds5 dosage-dependently regulate axis length and crossover frequency. Moderate changes in Pds5 protein levels do not explicitly impair the basic recombination process. Further investigations show that Pds5 does not regulate chromosome axes by altering Rec8 abundance. Conversely, Rec8 regulates chromosome axis length by modulating Pds5. These findings highlight the important role of Pds5 in regulating meiosis and its relationship with Rec8 to regulate chromosome axis length and crossover frequency with implications for evolutionary adaptation.

9.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32772095

ABSTRACT

CONTEXT: Premature ovarian insufficiency (POI) is characterized by cessation of menstruation before 40 years of age and elevated serum level of FSH (>25 IU/L). Recent studies have found a few causative genes responsible for POI enriched in meiotic recombination and DNA damage repair pathways. OBJECTIVE: To investigate the role of variations in homologous recombination genes played in POI pathogenesis. METHODS: The whole exome sequencing was performed in 50 POI patients with primary amenorrhea. Functional characterizations of the novel variants were carried out in budding yeast and human cell line. RESULTS: We identified 8 missense variants in 7 homologous recombination genes, including EXO1, RAD51, RMI1, MSH5, MSH2, MSH6, and MLH1. The mutation p.Thr52Ser in EXO1 impaired the meiotic process of budding yeast and p.Glu68Gly in RAD51-altered protein localization in human cells, both of them impaired the efficiency of homologous recombination repair for DNA double-stranded breaks in human cells. CONCLUSIONS: Our study first linked the variants of EXO1 and RAD51 with POI and further highlighted the role of DNA repair genes in ovarian dysgenesis.


Subject(s)
DNA Repair Enzymes/genetics , Exodeoxyribonucleases/genetics , Homologous Recombination/genetics , Rad51 Recombinase/genetics , Adult , DNA Mutational Analysis , Female , Humans , Mutation, Missense , Primary Ovarian Insufficiency/genetics , Exome Sequencing
10.
Microb Cell Fact ; 18(1): 85, 2019 May 18.
Article in English | MEDLINE | ID: mdl-31103030

ABSTRACT

BACKGROUND: Cell surface display of recombinant proteins has become a powerful tool for biotechnology and biomedical applications. As a model eukaryotic microorganism, Saccharomyces cerevisiae is an ideal candidate for surface display of heterologous proteins. However, the frequently used commercial yeast surface display system, the a-agglutinin anchor system, often results in low display efficiency. RESULTS: We initially reconstructed the a-agglutinin system by replacing two anchor proteins with one anchor protein. By directly fusing the target protein to the N-terminus of Aga1p and inserting a flexible linker, the display efficiency almost doubled, and the activity of reporter protein α-galactosidase increased by 39%. We also developed new surface display systems. Six glycosylphosphatidylinositol (GPI) anchored cell wall proteins were selected to construct the display systems. Among them, Dan4p and Sed1p showed higher display efficiency than the a-agglutinin anchor system. Linkers were also inserted to eliminate the effects of GPI fusion on the activity of the target protein. We further used the newly developed Aga1p, Dan4p systems and Sed1p system to display exoglucanase and a relatively large protein ß-glucosidase, and found that Aga1p and Dan4p were more suitable for immobilizing large proteins. CONCLUSION: Our study developed novel efficient yeast surface display systems, that will be attractive tools for biotechnological and biomedical applications.


Subject(s)
Cell Surface Display Techniques , Cell Wall/metabolism , Membrane Glycoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Adhesion Molecules/metabolism , Glycosylphosphatidylinositols/metabolism , Recombinant Fusion Proteins/metabolism
11.
Biotechnol Biofuels ; 10: 53, 2017.
Article in English | MEDLINE | ID: mdl-28261326

ABSTRACT

BACKGROUND: Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS: In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera ß-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS: We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.

12.
Sci Rep ; 6: 25654, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27156860

ABSTRACT

Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, ß-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion.


Subject(s)
Cell Wall/metabolism , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Secretory Pathway , Extracellular Space/metabolism , Gene Deletion , Glycosylation , Mannosyltransferases/genetics , Molecular Weight , Porosity , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Unfolded Protein Response , beta-Fructofuranosidase/metabolism
13.
Biotechnol Bioeng ; 112(9): 1872-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25850421

ABSTRACT

Saccharomyces cerevisiae is widely used as a producer of heterologous proteins of medical and industrial interest. Numerous efforts have been made to overcome bottlenecks in protein expression and secretion. However, the effect of engineering protein translocation to heterologous protein secretion has not been studied extensively in S. cerevisiae. In this work, we confirmed that heterologous protein expression in S. cerevisiae induced the unfolded protein response (UPR). To enhance protein folding capacity, the endoplasmic reticulum (ER) chaperone protein BiP and the disulfide isomerase Pdi1p were each over-expressed, and the secretion of three heterologous proteins, ß-glucosidase, endoglucanase, and α-amylase, was improved. The impact of engineering key translocation components was also studied. The over-expression of co-translational translocation components Srp14p and Srp54p enhanced the secretion of three heterologous proteins (ß-glucosidase, endoglucanase, and α-amylase), but over-expressing the cytosolic chaperone Ssa1p (involved in post-translational translocation) only enhanced the secretion of ß-glucosidase. By engineering both co-translational translocation and protein folding, we obtained strains with ß-glucosidase, endoglucanase, and α-amylase activities increased by 72%, 60%, and 103% compared to the controls. Our results show that protein translocation may be a limiting factor for heterologous protein production.


Subject(s)
Protein Engineering/methods , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...