Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(39): 10647-10656, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33144932

ABSTRACT

The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which can be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a pK a shift of 1.1 ± 0.6, yielding a predicted surface pK a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk pK a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface pK a can be predicted from MD simulations.

2.
J Phys Chem A ; 124(25): 5071-5080, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32441097

ABSTRACT

Recent studies have shown that pyruvic acid can produce higher-molecular-weight compounds upon irradiation in the aqueous phase. These compounds can contribute to the formation of secondary organic aerosols. There have been several previous studies on the effect of ionic strength on the photochemistry of pyruvic acid; however, few of them investigated the effects of marine relevant salts such as NaCl and CaCl2. In this study, we examine the effect of NaCl and CaCl2, namely, containing the coordinating cations Na+ and Ca2+, on the speciation, absorption properties, and photoreactivity of pyruvic acid in aqueous solutions of varying pH. NMR shows that both Ca2+ and Na+ further deprotonate pyruvic acid and decrease the diol to ketone ratio of pyruvic acid than in pure water at the same pH, especially at more acidic pH (pH less than 4). The absorption spectrum shows a strong red shift in the peak maxima for the n → π* transition of pyruvic acid in NaCl/CaCl2 solutions. This dependence is much more pronounced for divalent cations (Ca2+) compared to monovalent cations (Na+). Vertical excitation energy calculations of the anionic ketone form of pyruvic acid confirm the same red shift on the n → π* transition peak in the presence of Ca2+. In addition, the presence of NaCl/CaCl2 suppresses the photolysis rate of pyruvic acid, which could be due to the deprotonation of pyruvic acid by the cations and the lower photochemical reactivity for pyruvate, the deprotonated form.

3.
Langmuir ; 35(43): 13815-13820, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31584824

ABSTRACT

Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different from at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations well-below where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.


Subject(s)
Air , Serum Albumin, Bovine/chemistry , Water/chemistry , Animals , Cattle , Nonlinear Optical Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...