Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell Death Dis ; 15(2): 124, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336749

ABSTRACT

MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP) , Neuroblastoma , Animals , Humans , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Homeostasis , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , NADP/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Oxidation-Reduction
2.
Cancer Res ; 84(10): 1613-1629, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38381538

ABSTRACT

Neutrophil extracellular traps (NET), formed by the extracellular release of decondensed chromatin and granules, have been shown to promote tumor progression and metastasis. Tumor-associated neutrophils in hepatocellular carcinoma (HCC) are prone to NET formation, highlighting the need for a more comprehensive understanding of the mechanisms of action of NETs in liver cancer. Here, we showed that DNA of NETs (NET-DNA) binds transmembrane and coiled-coil domains 6 (TMCO6) on CD8+ T cells to impair antitumor immunity and thereby promote HCC progression. TGFß1 induced NET formation, which recruited CD8+ T cells. Binding to NET-DNA inhibited CD8+ T cells function while increasing apoptosis and TGFß1 secretion, forming a positive feedback loop to further stimulate NET formation and immunosuppression. Mechanistically, the N-terminus of TMCO6 interacted with NET-DNA and suppressed T-cell receptor signaling and NFκB p65 nuclear translocation. Blocking NET formation by inhibiting PAD4 induced potent antitumor effects in wild-type mice but not TMCO6-/- mice. In clinical samples, CD8+ T cells expressing TMCO6 had an exhausted phenotype. TGFß1 signaling inhibition or TMCO6 deficiency combined with anti-PD-1 abolished NET-driven HCC progression in vivo. Collectively, this study unveils the role of NET-DNA in impairing CD8+ T-cell immunity by binding TMCO6 and identifies targeting this axis as an immunotherapeutic strategy for blocking HCC progression. SIGNIFICANCE: TMCO6 is a receptor for DNA of NETs that mediates CD8+ T-cell dysfunction in HCC, indicating that the NET-TMCO6 axis is a promising target for overcoming immunosuppression in liver cancer.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Extracellular Traps , Liver Neoplasms , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Extracellular Traps/immunology , Extracellular Traps/metabolism , Transforming Growth Factor beta1/metabolism , Neutrophils/immunology , Neutrophils/metabolism , DNA/immunology , DNA/metabolism , Mice, Inbred C57BL , Mice, Knockout , Cell Line, Tumor , Male
3.
Oncoimmunology ; 13(1): 2289738, 2024.
Article in English | MEDLINE | ID: mdl-38125723

ABSTRACT

T/NK cell-based immunotherapy has achieved remarkable success in adult cancers but has limited efficacy in pediatric malignancies including high-risk neuroblastoma (NB). Immune defects of NB tumor microenvironment are poorly understood compared with adults. Here, we described the unique characteristics of NB immune contexture and determined the phenotype signatures of PD-L1-expressing CD8+ T and NK cells in NB tumors by systemically analyzing the spatial distribution of T and NK cells and the distinct expression of programmed death 1 (PD-1) and its ligand (PD-L1) in patients with NB. We found that PD-L1-expressing CD8+ T and NK cells in NB tumors were highly activated and functionally competent and associated with better clinical outcomes. Intratumoral NK cells were a favorable prognostic biomarker independent of CD8+ T cells, PD-1/PD-L1 expression, tumor stage, MYCN amplification, and risk classification. NK cells combined with anti-PD-1/PD-L1 antibodies showed potent antitumor activity against both MYCN-amplified and non-amplified NBs in vitro and in vivo, and PD-L1-expressing NK cells associated with improved antitumor efficacy. Collectively, we raise novel insights into the role of PD-L1 expression on CD8+ T-cell and NK-cell activation. We highlight the great potential of intratumoral NK cells in better defining risk stratification, and predicting survival and response to anti-PD-1/PD-L1 therapy in NB. These findings explain why single anti-PD-1/PD-L1 therapy may not be successful in NB, suggesting its combination with NK cell-adoptive cellular therapy as a promising strategy for relapsing/refractory NB. This study provides a potential prospect that patients with PD-L1-expressing NK cells may respond to anti-PD-1/PD-L1 therapy.


Subject(s)
B7-H1 Antigen , Neuroblastoma , Child , Adult , Humans , Programmed Cell Death 1 Receptor/genetics , CD8-Positive T-Lymphocytes/metabolism , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Killer Cells, Natural/metabolism , Prognosis , Neuroblastoma/therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Tumor Microenvironment
5.
Front Immunol ; 14: 1212577, 2023.
Article in English | MEDLINE | ID: mdl-37545530

ABSTRACT

Introduction: The limited response to immune checkpoint blockades (ICBs) in patients with hepatocellular carcinoma (HCC) highlights the urgent need for broadening the scope of current immunotherapy approaches. Lenvatinib has been shown a potential synergistic effect with ICBs. This study investigated the optimal method for combining these two therapeutic agents and the underlying mechanisms. Methods: The effect of lenvatinib at three different doses on promoting tissue perfusion and vascular normalization was evaluated in both immunodeficient and immunocompetent mouse models. The underlying mechanisms were investigated by analyzing the vascular morphology of endothelial cells and pericytes. The enhanced immune infiltration of optimal-dose lenvatinib and its synergistic effect of lenvatinib and anti-PD-1 antibody was further evaluated by flow cytometry and immunofluorescence imaging. Results: There was an optimal dose that superiorly normalized tumor vasculature and increased immune cell infiltration in both immunodeficient and immunocompetent mouse models. An adequate concentration of lenvatinib strengthened the integrity of human umbilical vein endothelial cells by inducing the formation of the NRP-1-PDGFRß complex and activating the Crkl-C3G-Rap1 signaling pathway in endothelial cells. Additionally, it promoted the interaction between endothelial cells and pericytes by inducing tyrosine-phosphorylation in pericytes. Furthermore, the combination of an optimal dose of lenvatinib and an anti-PD-1 antibody robustly suppressed tumor growth. Conclusions: Our study proposes a mechanism that explains how the optimal dose of lenvatinib induces vascular normalization and confirms its enhanced synergistic effect with ICBs.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , Antineoplastic Agents/therapeutic use , Liver Neoplasms/pathology , Endothelial Cells/metabolism , Disease Models, Animal
6.
Front Immunol ; 14: 1182751, 2023.
Article in English | MEDLINE | ID: mdl-37359533

ABSTRACT

Background: Programmed death receptor 1 (PD-1) inhibition has shown durable response and mild adverse events (AEs) in adult malignancies. However, data on the clinical activity of PD-1 inhibition in pediatric patients are lacking. We comprehensively assessed the efficacy and safety of PD-1 inhibitor-based regimens for pediatric malignancies. Methods: We conducted a real-world, multi-institutional, retrospective analysis of pediatric malignancies treated with PD-1 inhibitor-based regimens. The primary endpoints were objective response rate (ORR) and progression-free survival (PFS). The secondary endpoints included disease control rate (DCR), duration of response (DOR), and AEs. The Kaplan-Meier method was used to calculate PFS and DOR. The National Cancer Institute Common Toxicity Criteria for AEs (version 5.0) were used to grade toxicity. Results: A total of 93 and 109 patients were evaluated for efficacy and safety, respectively. For all efficacy-evaluable patients, PD-1 inhibitor monotherapy, combined chemotherapy, combined histone deacetylase inhibitor, and combined vascular endothelial growth factor receptor tyrosine kinase inhibitor cohorts, the ORR and DCR were 53.76%/81.72%, 56.67%/83.33%, 54.00%/80.00%, 100.00%/100.00%, and 12.50%/75.00%, respectively; the median PFS and DOR were 17.6/31.2 months, not achieved/not achieved, 14.9/31.2 months, 17.6/14.9 months, and 3.7/1.8 months, respectively; the incidence rate of AEs were 83.49%, 55.26%, 100.00%, 80.00%, and 100.00%, respectively. One patient in the PD-1 inhibitor-combined chemotherapy cohort discontinued treatment due to diabetic ketoacidosis. Conclusions: This largest retrospective analysis demonstrate that PD-1 inhibitor-based regimens are potentially effective and tolerable in pediatric malignancies. Our findings provide references for future clinical trials and practice of PD-1 inhibitors in pediatric cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Child , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor , Vascular Endothelial Growth Factor A , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Apoptosis
7.
Front Pharmacol ; 14: 1132219, 2023.
Article in English | MEDLINE | ID: mdl-37205905

ABSTRACT

Introduction: Metronomic maintenance therapy (MMT) has significantly improved the survival of patients with high-risk rhabdomyosarcoma in clinical trials. However, there remains a lack of relevant data on its effectiveness in real-world situations. Methods: We retrospectively retrieved data of 459 patients < 18 years of age diagnosed with rhabdomyosarcoma at Sun Yat-sen University Cancer Center from January 2011 to July 2020 from our database. The MMT regimen was oral vinorelbine 25-40 mg/m2 for twelve 4-week cycles on days 1, 8, and 15, and oral cyclophosphamide 25-50 mg/m2 daily for 48 consecutive weeks. Results: A total of 57 patients who underwent MMT were included in the analysis. The median follow-up time was 27.8 (range: 2.9-117.5) months. From MMT to the end of follow-up, the 3-year PFS and OS rates were 40.6% ± 6.8% and 58.3% ± 7.2%, respectively. The 3-year PFS was 43.6% ± 11.3% in patients who were initially diagnosed as low- and intermediate-risk but relapsed after comprehensive treatment (20/57), compared with 27.8% ± 10.4% in high-risk patients (20/57) and 52.8% ± 13.3% in intermediate-risk patients who did not relapse (17/57). The corresponding 3-year OS for these three groups was 65.8% ± 11.4%, 50.1% ± 12.9%, and 55.6% ± 13.6%, respectively. Conclusion: We present a novel study of MMT with oral vinorelbine and continuous low doses of cyclophosphamide in real-world pediatric patients with RMS. Our findings showed that the MMT strategy significantly improved patient outcomes and may be an effective treatment for high-risk and relapsed patients.

8.
Theranostics ; 13(5): 1649-1668, 2023.
Article in English | MEDLINE | ID: mdl-37056569

ABSTRACT

Rationale: Resistance to 5-fluorouracil (5-FU) chemotherapy remains the main barrier to effective clinical outcomes for patients with colorectal cancer (CRC). A better understanding of the detailed mechanisms underlying 5-FU resistance is needed to increase survival. Interleukin (IL)-33 is a newly discovered alarmin-like molecule that exerts pro- and anti-tumorigenic effects in various cancers. However, the precise role of IL-33 in CRC progression, as well as in the development of 5-FU resistance, remains unclear. Methods: High-quality RNA-sequencing analyses were performed on matched samples from patients with 5-FU-sensitive and 5-FU-resistant CRC. The clinical and biological significance of IL-33, including its effects on both T cells and tumor cells, as well as its relationship with 5-FU chemotherapeutic activity were examined in ex vivo, in vitro and in vivo models of CRC. The molecular mechanisms underlying these processes were explored. Results: IL-33 expressed by tumor cells was a dominant mediator of antitumoral immunity in 5-FU-sensitive patients with CRC. By binding to its ST2 receptor, IL-33 triggered CD4+ (Th1 and Th2) and CD8+ T cell responses by activating annexin A1 downstream signaling cascades. Mechanistically, IL-33 enhanced the sensitivity of CRC cells to 5-FU only in the presence of T cells, which led to the activation of both tumor cell-intrinsic apoptotic and immune killing-related signals, thereby synergizing with 5-FU to induce apoptosis of CRC cells. Moreover, injured CRC cells released more IL-33 and the T cell chemokines CXCL10 and CXCL13, forming a positive feedback loop to further augment T cell responses. Conclusions: Our results identified a previously unrecognized connection between IL-33 and enhanced sensitivity to 5-FU. IL-33 created an immune-active tumor microenvironment by orchestrating antitumoral T cell responses. Thus, IL-33 is a potential predictive biomarker for 5-FU chemosensitivity and favorable prognosis and has potential as a promising adjuvant immunotherapy to improve the clinical benefits of 5-FU-based therapies in the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Alarmins/therapeutic use , Colorectal Neoplasms/pathology , Interleukin-33 , Cell Line, Tumor , Drug Resistance, Neoplasm , Tumor Microenvironment
9.
Int J Biol Sci ; 18(14): 5241-5259, 2022.
Article in English | MEDLINE | ID: mdl-36147467

ABSTRACT

The imbalance of kinetochore-microtubule attachment during cell mitosis is a response to the initiation and progression of human cancers. Spindle component 25 (SPC25) is indispensable for spindle apparatus organization and chromosome segregation. SPC25 plays an important role in the development of malignant tumors, but its role in hepatocellular carcinoma (HCC) is yet to be determined. In this study, we aimed to preliminarily investigate the role of SPC25 in HCC progression and the molecular mechanisms underlying the process. We identified SPC25 as a clinically notable molecule significantly correlated with the grade of malignancy and poor survival in both The Cancer Genome Atlas (TCGA) cohort and the HCC patient cohort from our center. Mechanistically, SPC25 promoted the incidence of DNA damage and activated the DNA-PK/Akt/Notch1 signaling cascade in HCC cells; the NICD/ RBP-Jκ complex directly targeted SOX2 and NANOG in a transcriptional manner to regulate the proliferation and self-renewal of HCC cells. Our study suggests that HCC-intrinsic SPC25/DNA-PK/Akt/Notch1 signaling is an important mechanism to promote carcinogenesis by regulating the proliferation and stemness program, which provides possible biomarkers for predicting HCC progression and poor survival, as well as potential therapeutic targets for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Microtubule-Associated Proteins , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , DNA , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction/genetics
10.
J Immunol ; 208(6): 1483-1492, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35246494

ABSTRACT

Therapies targeting programmed cell death protein 1 (PD-1) have gained great success in patients with multiple types of cancer. The regulatory mechanisms underlying PD-1 expression have been extensively explored. However, the impact of long noncoding RNAs on PD-1 expression remains elusive. In this study, we identified the Notch1/lncNDEPD1 axis, which plays a critical role in PD-1 expression in human CD8+ T cells. RNA sequencing and quantitative reverse transcription PCR data showed that lncNDEPD1 was upregulated in activated T cells, especially in PD-1high subsets. Fluorescence in situ hybridization demonstrated that lncNDEPD1 was localized in the cytoplasm. A mechanistic study showed that lncNDEPD1 could bind with miR-3619-5p and PDCD1 mRNA to prevent PDCD1 mRNA degradation and then upregulate PD-1 expression. A chromatin immunoprecipitation assay showed that Notch1 directly binds to the promoter of lncNDEPD1 instead of PDCD1 Furthermore, chimeric Ag receptor T cells expressing lncNDEPD1-specific short hairpin RNAs were generated. Chimeric Ag receptor T cells with decreased lncNDEPD1 expression showed enhanced tumoricidal effects when PD-L1 was present. Our work uncovered a new regulatory mechanism of PD-1 expression and thus provided a potential target to decrease PD-1 without affecting T cell function.


Subject(s)
MicroRNAs , RNA, Long Noncoding , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , MicroRNAs/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
11.
Cell Death Dis ; 13(3): 251, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35304440

ABSTRACT

Hepatocellular carcinoma is one of the most common malignancies and has a poor prognosis. The ubiquitin-proteasome pathway is required for the degradation of most short-lived proteins. CMTM6 has been implicated in the progression of various tumors, but its biological function and the underlying molecular mechanisms in HCC are still unknown. In this study, we found that the expression of CMTM6 was significantly reduced in HCC and predicted better prognosis of HCC patients. Through in vitro and in vivo experiments, CMTM6 was shown to inhibit the proliferation of HCC cells by blocking the G1/S phase transition. Mechanistically, CMTM6 interacted with p21 and prevented its ubiquitination mediated by SCFSKP2, CRL4CDT2 and APC/CCDC20 in a cell-cycle-independent manner. As a result, CMTM6 stabilized p21 protein, leading to the inactivation of pRB/E2F pathway. Additionally, CMTM6 sensitized HCC cells to doxorubicin and cisplatin, positively correlated with better clinical outcomes of the transarterial chemoembolization (TACE) treatment for postoperative recurrence. Taken together, our study reports a novel mechanism by which p21 can be stabilized by CMTM6 and pinpoints a crucial role of the CMTM6-p21 axis in suppressing the progression of HCC and sensitizing patients with postoperative recurrence to TACE treatment.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Ubiquitination
12.
Cell Death Dis ; 12(12): 1093, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795209

ABSTRACT

Most patients with hepatocellular carcinoma (HCC) are in the middle or advanced stage at the time of diagnosis, and the therapeutic effect is limited. Therefore, this study aimed to verify whether deoxythymidylate kinase (DTYMK) increased in HCC and was an effective therapeutic target in HCC. The findings revealed that the DTYMK level significantly increased and correlated with poor prognosis in HCC. However, nothing else is known, except that DTYMK could catalyze the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). A number of experiments were performed to study the function of DTYMK in vitro and in vivo to resolve this knowledge gap. The knockdown of DTYMK was found to significantly inhibit the growth of HCC and increase the sensitivity to oxaliplatin, which is commonly used in HCC treatment. Moreover, DTYMK was found to competitively combine with miR-378a-3p to maintain the expression of MAPK activated protein kinase 2 (MAPKAPK2) and thus activate the phospho-heat shock protein 27 (phospho-HSP27)/nuclear factor NF-kappaB (NF-κB) axis, which mediated the drug resistance, proliferation of tumor cells, and infiltration of tumor-associated macrophages by inducing the expression of C-C motif chemokine ligand 5 (CCL5). Thus, this study demonstrated a new mechanism and provided a new insight into the role of mRNA in not only encoding proteins to regulate the process of life but also regulating the expression of other genes and tumor microenvironment through the competing endogenous RNA (ceRNA) mechanism.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Nucleoside-Phosphate Kinase/metabolism , Oxaliplatin/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Mice , Oxaliplatin/pharmacology , Survival Analysis
13.
Hepatology ; 73(5): 1717-1735, 2021 05.
Article in English | MEDLINE | ID: mdl-33682185

ABSTRACT

BACKGROUND AND AIMS: Cancer-associated fibroblasts (CAFs) are key players in multicellular, stromal-dependent alterations leading to HCC pathogenesis. However, the intricate crosstalk between CAFs and other components in the tumor microenvironment (TME) remains unclear. This study aimed to investigate the cellular crosstalk among CAFs, tumor cells, and tumor-associated neutrophils (TANs) during different stages of HCC pathogenesis. APPROACH AND RESULTS: In the HCC-TME, CAF-derived cardiotrophin-like cytokine factor 1 (CLCF1) increased chemokine (C-X-C motif) ligand 6 (CXCL6) and TGF-ß secretion in tumor cells, which subsequently promoted tumor cell stemness in an autocrine manner and TAN infiltration and polarization in a paracrine manner. Moreover, CXCL6 and TGF-ß secreted by HCC cells activated extracellular signal-regulated kinase (ERK) 1/2 signaling of CAFs to produce more CLCF1, thus forming a positive feedback loop to accelerate HCC progression. Inhibition of ERK1/2 or CLCF1/ciliary neurotrophic factor receptor signaling efficiently impaired CLCF1-mediated crosstalk among CAFs, tumor cells, and TANs both in vitro and in vivo. In clinical samples, up-regulation of the CLCF1-CXCL6/TGF-ß axis exhibited a marked correlation with increased cancer stem cells, "N2"-polarized TANs, tumor stage, and poor prognosis. CONCLUSIONS: This study reveals a cytokine-mediated cellular crosstalk and clinical network involving the CLCF1-CXCL6/TGF-ß axis, which regulates the positive feedback loop among CAFs, tumor stemness, and TANs, HCC progression, and patient prognosis. These results may support the CLCF1 cascade as a potential prognostic biomarker and suggest that selective blockade of CLCF1/ciliary neurotrophic factor receptor or ERK1/2 signaling could provide an effective therapeutic target for patients with HCC.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Hepatocellular/metabolism , Chemokine CXCL6/metabolism , Cytokines/metabolism , Disease Progression , Female , Humans , Liver Neoplasms/metabolism , MAP Kinase Signaling System , Male , Middle Aged , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
14.
Clin Transl Immunology ; 10(3): e1257, 2021.
Article in English | MEDLINE | ID: mdl-33717483

ABSTRACT

OBJECTIVES: Although axitinib has achieved a preferable response rate for advanced renal cell carcinoma (RCC), patient survival remains unsatisfactory. In this study, we evaluated the efficacy and safety of a combination treatment of axitinib and a low dose of pembrolizumab-activated autologous dendritic cells-co-cultured cytokine-induced killer cells in patients with advanced RCC. METHODS: All adult patients, including treatment-naive or pretreated with VEGF-targeted agents, were enrolled from May 2016 to March 2019. Patients received axitinib 5 mg twice daily and pembrolizumab-activated dendritic cells-co-cultured cytokine-induced killer cells intravenously weekly for the first four cycles, every 2 weeks for the next four cycles, and every month thereafter. RESULTS: The 43 patients (22 untreated and 21 previously treated) showed a median progression-free survival (mPFS) of 14.7 months (95% CI, 11.16-18.30). mPFS in treatment-naive patients was 18.2 months, as compared with 14.4 months in pretreated patients (log-rank P-value = 0.07). Overall response rates were 25.6% (95% CI, 13.5-41.2%). Grade 3 or higher adverse events occurred in 5% of patients included hypertension (11.6%) and palmar-plantar erythrodysesthesia (7.0%). Peripheral blood lymphocyte immunophenotype and serum cytokine profile analyses demonstrated increased antitumor immunity after combination treatment particularly in patients with a long-term survival benefit, while those with a minimal survival benefit demonstrated an elevated proportion of peripheral CD8+TIM3+ T cells and lower serum-level immunostimulatory cytokine profile. CONCLUSIONS: The combination therapy was active and well tolerated for treatment of advanced RCC, either as first- or second-line treatment following other targeted agents. Changes in immunophenotype and serum cytokine profile may be used as prognostic biomarkers.

15.
Oncol Lett ; 21(3): 205, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33574944

ABSTRACT

Bladder cancer (BC) is the ninth most common lethal malignancy worldwide. Great efforts have been devoted to clarify the pathogenesis of BC, but the underlying molecular mechanisms remain unclear. To screen for the genes associated with the progression and carcinogenesis of BC, three datasets were obtained from the Gene Expression Omnibus. A total of 37 tumor and 16 non-cancerous samples were analyzed to identify differentially expressed genes (DEGs). Subsequently, 141 genes were identified, including 55 upregulated and 86 downregulated genes. The protein-protein interaction network was established using the Search Tool for Retrieval of Interacting Genes database. Hub gene identification and module analysis were performed using Cytoscape software. Hierarchical clustering of hub genes was conducted using the University of California, Santa Cruz Cancer Genomics Browser. Among the hub genes, kinesin family member 11 (KIF11) was identified as one of the most significant prognostic biomarkers among all the candidates. The Kaplan Meier Plotter database was used for survival analysis of KIF11. The expression profile of KIF11 was analyzed using the ONCOMINE database. The expression levels of KIF11 in BC samples and bladder cells were measured using reverse transcription-quantitative pCR, immunohistochemistry and western blotting. In summary, KIF11 was significantly upregulated in BC and might act as a potential prognostic biomarker. The present identification of DEGs and hub genes in BC may provide novel insight for investigating the molecular mechanisms of BC.

16.
Biomark Res ; 8: 49, 2020.
Article in English | MEDLINE | ID: mdl-33005420

ABSTRACT

BACKGROUND: Interferon-γ (IFN-γ) plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. MAIN BODY: Some researchers believe it has anti-tumorigenic properties, while others suggest that it contributes to tumor growth and progression. In our recent work, we have shown that concentration of IFN-γ in the TME determines its function. Further, it was reported that tumors treated with low-dose IFN-γ acquired metastatic properties while those infused with high dose led to tumor regression. Pro-tumorigenic role may be described through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, upregulation of indoleamine 2,3-dioxygenase, and checkpoint inhibitors such as programmed cell death ligand 1. CONCLUSION: Significant research efforts are required to decipher IFN-γ-dependent pro- and anti-tumorigenic effects. This review discusses the current knowledge concerning the roles of IFN-γ in the TME as a part of the complex immune response to cancer and highlights the importance of identifying IFN-γ responsive patients to improve their sensitivity to immuno-therapies.

17.
Br J Cancer ; 123(10): 1521-1534, 2020 11.
Article in English | MEDLINE | ID: mdl-32801345

ABSTRACT

BACKGROUND: High probability of metastasis limited the long-term survival of patients with hepatocellular carcinoma (HCC). Our previous study revealed that Galectin-3 was closely associated with poor prognosis in HCC patients. METHODS: The effects of Galectin-3 on tumour metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. RESULTS: Galectin-3 showed a close correlation with vascular invasion and poor survival in a large-scale study in HCC patients from multiple sets. Galectin-3 was significantly involved in diverse metastasis-related processes in HCC cells, such as angiogenesis and epithelial-to-mesenchymal transition (EMT). Mechanistically, Galectin-3 activated the PI3K-Akt-GSK-3ß-ß-catenin signalling cascade; the ß-catenin/TCF4 transcriptional complex directly targeted IGFBP3 and vimentin to regulate angiogenesis and EMT, respectively. In animal models, Galectin-3 enhanced the tumorigenesis and metastasis of HCC cells via ß-catenin signalling. Moreover, molecular deletion of Galectin-3-ß-catenin signalling synergistically improved the antitumour effect of sorafenib. CONCLUSIONS: The Galectin-3-ß-catenin-IGFBP3/vimentin signalling cascade was determined as a central mechanism controlling HCC metastasis, providing possible biomarkers for predicating vascular metastasis and sorafenib resistance, as well as potential therapeutic targets for the treatment of HCC patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Galectin 3/physiology , Liver Neoplasms/pathology , beta Catenin/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Neoplasms, Vascular Tissue/genetics , Neoplasms, Vascular Tissue/mortality , Neoplasms, Vascular Tissue/secondary , Survival Analysis , Tissue Array Analysis , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
18.
Oncoimmunology ; 9(1): 1752563, 2020.
Article in English | MEDLINE | ID: mdl-32363125

ABSTRACT

Adjuvant chemotherapy after surgery is the standard treatment modality for stage III and part of stage II or stage IV colorectal cancer (CRC) patients. However, the 5-year overall survival (OS) rate remains unsatisfactory. Thus, developing combination therapies is essential to improve the prognosis of patients with CRC. The present study aimed to determine the effect of a sequential combination of cytokine-induced killer cell (CIK) infusion and chemotherapy for patients with CRC. 122 patients with CRC treated with postoperative adjuvant chemotherapy were retrospectively included in this study. Among them, 62 patients received adjuvant chemotherapy only (control group), while the other 60 patients, with similar demographic and clinical characteristics, received adjuvant chemotherapy and sequential CIK cell immunotherapy (CIK group). Survival analysis showed significantly improved disease free survival (DFS) and OS rates in the CIK group compared with the control group (log-rank test, P = .0024; P = .008, respectively). Univariate and multivariate analyses indicated that sequential CIK cell treatment was an independent prognostic factor for patients' DFS and OS. Subgroup analyses showed that sequential CIK cell treatment significantly improved the DFS and OS of patients with high-risk T4 stage and insufficient chemotherapy duration. In conclusion, these data indicate that sequential adjuvant CIK cell treatment combined with chemotherapy is an effective therapeutic strategy to prevent disease recurrence and prolong survival of patients with CRC, particularly for patients with high-risk T4 stage and insufficient chemotherapy duration.


Subject(s)
Colorectal Neoplasms , Cytokine-Induced Killer Cells , Chemotherapy, Adjuvant , Colorectal Neoplasms/therapy , Combined Modality Therapy , Digestive System Surgical Procedures , Female , Humans , Immunotherapy, Adoptive , Male , Middle Aged , Neoplasm Recurrence, Local , Retrospective Studies
19.
Oncotarget ; 11(9): 891-892, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32180901

ABSTRACT

[This corrects the article DOI: 10.18632/oncotarget.22160.].

20.
Clin Transl Immunology ; 9(2): e1113, 2020.
Article in English | MEDLINE | ID: mdl-32076550

ABSTRACT

OBJECTIVES: Fluoropyrimidine-based chemotherapy regimens are the current first-line treatment for metastatic colorectal cancer (mCRC); however, the outcome is often unsatisfactory. The present study aimed to determine the effect of combined cytokine-induced killer (CIK) cell immunotherapy and first-line chemotherapy in patients with mCRC. METHODS: This retrospective study included 252 patients with mCRC treated with first-line chemotherapy. Among them, 126 patients received first-line chemotherapy only (control group), while the other 126 patients, with similar demographic and clinical characteristics, received CIK cell immunotherapy combined with first-line chemotherapy (CIK group). Overall survival (OS) and progression-free survival (PFS) were compared between the two groups using the Kaplan-Meier method. RESULTS: The median OS for the CIK group was 54.7 versus 24.1 months for the controls, and the median PFS for the CIK group was 25.7 versus 14.6 months for the controls. Univariate and multivariate analyses indicated that CIK cell treatment was an independent prognostic factor for patients' OS and PFS. Subgroup analyses showed that CIK cell treatment significantly improved the OS and PFS of patients with metastatic colon cancer, but not those with metastatic rectal cancer. Additionally, the change in CD3+CD56+ subsets after the fourth treatment cycle might be an indicator of successful CIK cell treatment: Patients with increased CD3+CD56+ subsets had better survival than those with decreased CD3+CD56+ subsets. CONCLUSION: Cytokine-induced killer cell immunotherapy combined with first-line chemotherapy could significantly improve the OS and PFS of patients with mCRC, particularly for patients with metastatic colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...