Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 677: 132-140, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37586211

ABSTRACT

Peptide detection methods with facility and high sensitivity are essential for diagnosing disease associated with peptide biomarkers. Nanopore sensing technology had emerged as a low cost, high-throughput, and scalable tool for peptide detection. The omptins family proteins which can form ß-barrel pores have great potentials to be developed as nanopore biosensor. However, there are no study about the channel properties of E. coli OmpT and the development of OmpT as a nanopore biosensor. In this study, the OmpT biological nanopore channel was constructed with a conductance of 1.49 nS in 500 mM NaCl buffer and a three-step gating phenomenon under negative voltage higher than 100 mV and then was developed as a peptide biosensor which can detect peptide without the interfere of ssDNA and dNTPs. The OmpT constructed in this study has potential application in peptide detection, and also provides a new idea for the detection of peptides using the specific binding ability of protease.


Subject(s)
Escherichia coli Proteins , Nanopores , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Peptides/metabolism
3.
Int J Food Microbiol ; 363: 109506, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34990885

ABSTRACT

A carrier (stainless steel disc as a default carrier) testing method is very needed for use in the actual food-processing fields by following the standard guideline. Here, we aimed to compare the virucidal efficacy of four commercial liquid disinfectants, including sodium hypochlorite (NaOCl), chlorine dioxide (ClO2), and peracetic acid (PAA) against hepatitis A virus (HAV) following the OECD guideline protocol based on the quantitative carrier testing method and compared carrier testing results with the suspension testing results. The OECD method specifies a test for establishing whether a chemical disinfectant or a microbicide has a virucidal activity on hard non-porous surfaces. The antiviral efficacy was evaluated by plaque assays, and disinfectants were considered effective if the virus reduction was greater than or equal to 3 log10 (99.9% decrease) for carrier or 4 log10 (99.99% decrease) for suspension tests. Results indicated that ClO2 above 500 ppm and 50% ethanol were effective in the carrier test method. In contrast, more than 200 ppm NaOCl and 50 ppm ClO2 for all exposure times and 70% ethanol with contact for more than 5 min were effective in suspension tests. Treatment with PAA (80-2500 ppm) were not effective in carrier or suspension tests. Therefore, we recommend the use of more than 500 ppm ClO2 or 50% ethanol with exposure for 10 min to disinfect surfaces that may be contaminated with HAV. Thus, these results could be effective in establishing official antiviral efficacy testing methods and basic data.


Subject(s)
Disinfectants , Hepatitis A virus , Chlorine Compounds , Disinfectants/pharmacology , Ethanol , Oxides , Peracetic Acid/pharmacology , Sodium Hypochlorite/pharmacology
4.
Front Genet ; 11: 582366, 2020.
Article in English | MEDLINE | ID: mdl-33193708

ABSTRACT

Osteo/odontogenic differentiation is a key process of human stem cells from apical papilla (SCAP) in tooth root development. Emerging evidence indicates microRNAs (miRNAs) play diverse roles in osteogenesis. However, their functions in osteo/odontogenic differentiation of SCAP require further elucidation. To investigate the role of miRNA in SCAP osteo/odontogenic differentiation and underlying mechanisms, miRNA microarray analysis was performed to screen differentially expressed miRNAs between control and osteo/odontogenic-induced group. Quantitative real-time PCR (qRT-PCR) and western blot were used to detected osteo/odontogenic differentiation-related markers and possible signaling pathway SCAP-associated genes. Alizarin Red Staining (ARS) were applied to evaluated osteogenic capacity. The results showed that miR-497-5p increased during SCAP osteo/odontogenic differentiation. Overexpression of miR-497-5p enhanced the osteo/odontogenic differentiation of SCAP, whereas downregulation of miR-497-5p elicited the opposite effect, thus suggesting that miR-497-5p is a positive regulator of the osteo/odontogenic differentiation of SCAP. Bioinformatic analysis and dual luciferase reporter assay identified that SMAD specific E3 ubiquitin protein ligase 2 (Smurf2) is a direct target of miR-497-5p. Further study demonstrated that Smurf2 negatively regulates SCAP osteo/odontogenic differentiation, and silencing Smurf2 could block the inhibitory effect of the miR-497-5p inhibitor. Meanwhile, pathway detection manifested that miR-497-5p promotes osteo/odontogenic differentiation via Smad signaling pathway. Collectively, our findings demostrate that miR-497-5p promotes osteo/odontogenic differentiation of SCAP via Smad signaling pathway by targeting Smurf2.

5.
Sci Rep ; 10(1): 12022, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694702

ABSTRACT

Infection by hepatitis E virus (HEV) via the oral route causes acute hepatitis. Extra-hepatic manifestations of HEV infection may stem from various causes; however, its distribution in organs such as the liver, as well as the mechanisms underlying HEV-induced cell injury, remain unclear. The objective of this study was to determine the chronological distribution of HEV in various tissues of HEV-challenged miniature pigs and to investigate the mechanisms underlying HEV-induced cell death in the pancreas and liver. Virological and serological analyses were performed on blood and faecal samples. Histopathology of the liver and extra-hepatic tissues was analysed. Cell death pathways and immune cell characterisation in inflammatory lesions were analysed using immunohistochemistry. The liver and pancreas displayed inflammation and cellular injury, and a large amount of HEV was observed in the lesions. The liver was infiltrated by T and natural killer cells. HEV was identified in all organs except the heart, and was associated with immune cells. Although the liver and the pancreas strongly expressed TNF-α and TRAIL, TUNEL assay results were negative. RIP3 and pMLKL were expressed in the pancreas. RIP3, but not pMLKL, was expressed in the liver. Pancreatitis induced in HEV-infected miniature pigs is associated with necroptosis.


Subject(s)
Hepatitis E virus/immunology , Hepatitis E/immunology , Necroptosis , Pancreas/pathology , Swine Diseases/immunology , Animals , Disease Models, Animal , Feces/virology , Hepatitis E/complications , Hepatitis E/virology , Hepatitis E virus/genetics , Killer Cells, Natural/immunology , Liver/immunology , Liver/pathology , Pancreas/immunology , Pancreatitis/etiology , Pancreatitis/immunology , Pancreatitis/virology , RNA, Viral/analysis , RNA, Viral/blood , Reverse Transcriptase Polymerase Chain Reaction , Swine , Swine Diseases/virology , Swine, Miniature , T-Lymphocytes/immunology
6.
Mikrochim Acta ; 187(7): 376, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518968

ABSTRACT

A capture probe complex containing a specific Salmonella enteritidis (S. enteritidis) aptamer and partly hybridized signal trigger sequence was designed with the ability to directly detect viable S. enteritidis. In the presence of the target S. enteritidis, single-stranded trigger sequences were liberated and in turn reacted with hairpins I, II, and III to initiate the triple strand migration reaction; this in turn produced numerous hairpin I·II·III complexes with scaffolds of copper nanoparticles (CuNPs) and replaced the trigger sequence which initiated the next cycle of triple migration reaction. Cyclically, the reuse of the trigger sequences and the successive, cascading production of scaffolds of CuNPs achieved the synthesis of highly fluorescent CuNPs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. enteritidis as low as 25 CFU/mL with a linear range of detection from 50 to 104 CFU/mL with an emission wavelength at 590 nm. By integrating the triple cascade strand migration amplification with recyclable trigger sequences, aptamer-based target recognition, and self-protection mediated by CuNPs hairpin scaffolds, this is the first report on a non-labeled, non-enzymatic, modification-free, and DNA extraction-free ultrasensitive fluorescent biosensor for the direct detection of live Salmonella, which is distinguished from dead Salmonella. It also provides a new strategy to detect viable bacteria by applying the CuNPs, thus extending the application of metal nanoparticles. Graphical abstract.


Subject(s)
Biosensing Techniques/methods , Cell Count/methods , DNA/chemistry , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Salmonella enteritidis/isolation & purification , Animals , Aptamers, Nucleotide/chemistry , Copper/chemistry , DNA/genetics , DNA Probes/chemistry , DNA Probes/genetics , Food Contamination/analysis , Inverted Repeat Sequences , Limit of Detection , Nucleic Acid Hybridization , Pork Meat/microbiology , Salmonella enteritidis/chemistry , Spectrometry, Fluorescence , Swine
8.
BMC Oral Health ; 20(1): 50, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32050954

ABSTRACT

BACKGROUND: Stem cells from apical papilla (SCAP) located in the root apex of immature permanent teeth are a reliable cell source for pulp-dentine complex regeneration. Mineral trioxide aggregate (MTA) is a biocompatible material which has been widely used in endodontic treatments. The aim of this study was to elucidate the regulatory role of MTA in the proliferation and differentiation of SCAP. METHODS: Cell viability was detected by Cell counting kit-8. Characteristics of SCAP were confirmed by Flow cytometric (FCM) analysis and alizarin red staining. Then, MTA-mediated osteo/odontogenic differentiation of SCAP was investigated by reverse transcription polymerase chain reaction. The effect of MAPKs on MTA-mediated osteo/odontogenic differentiation was evaluated by western blot analysis. RESULTS: There was no significant difference in cell viability between the control group and the group with lower concentrations of MTA. However, higher concentrations of MTA could inhibit proliferation of SCAP. It is demonstrated that the ALP activity were enhanced, the mRNA and protein expression of BSP, OCN, DSPP, Runx2 were up-regulated. In addition, phosphorylation proteins of ERK, p38 were activated through western blot analysis. CONCLUSIONS: MTA at appropriate concentration could enhance osteo/odontogenic differentiation of SCAP by activating p38 and ERK signaling pathways. This study provides a new idea for the clinical application of MTA and the treatment of endodontic diseases.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation , Dental Papilla/cytology , MAP Kinase Signaling System/physiology , Odontogenesis/genetics , Osteogenesis/genetics , Stem Cells/metabolism , Stem Cells/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Aluminum Compounds , Calcium Compounds , Cells, Cultured , Dental Pulp , Drug Combinations , Humans , Odontogenesis/drug effects , Osteogenesis/drug effects , Oxides , Silicates
9.
J Endod ; 45(2): 161-167, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30711172

ABSTRACT

INTRODUCTION: Odontogenic differentiation of human stem cells from the apical papilla (SCAPs) is a prerequisite step in the root development of immature permanent teeth. However, little is known about the effects of an inflammatory environment on osteo/odontogenic differentiation of SCAPs. The purpose of this study was to investigate the effects of lipopolysaccharide (LPS) on the proliferation and osteo/odontogenic differentiation of SCAPs and the role of mitogen-activated protein kinase (MAPK) signaling pathways in LPS-mediated osteo/odontogenic differentiation of SCAPs. METHODS: SCAPs of human third permanent molars were cultured. Cell viability was analyzed. Alkaline phosphatase activity and mineralization ability were investigated. Gene expression of osteo/odontogenic differentiation and MAPK signaling pathways was evaluated during osteo/odontogenic differentiation of SCAPs. RESULTS: In the 0.1 µg/mL LPS-treated group, cell proliferation, alkaline phosphatase activity, and mineralization of SCAPs were up-regulated. Real-time quantitative polymerase chain reaction revealed that dentin sialophosphoprotein, runt-related transcription factor 2, and bone sialoprotein were increased. However, we did not detect any change of osteocalcin expression. In addition, the expression of p-ERK and p-p38 in SCAPs was enhanced by LPS treatment, whereas the inhibition of ERK and p38 MAPK pathways markedly suppressed the differentiation of LPS-treated SCAPs. CONCLUSIONS: Our findings showed that LPS at the appropriate concentration promoted the proliferation and osteo/odontogenic differentiation of SCAPs. ERK and p38 MAPK signaling pathways are involved in LPS-mediated osteo/odontogenic differentiation of SCAPs.


Subject(s)
Cell Differentiation/drug effects , Cell Differentiation/genetics , Dental Papilla/cytology , MAP Kinase Signaling System/physiology , Odontogenesis/genetics , Osteogenesis/genetics , Stem Cells/physiology , Tooth Apex/cytology , Cells, Cultured , Humans , Lipopolysaccharides/pharmacology , Odontogenesis/drug effects , Osteogenesis/drug effects
10.
J Biol Chem ; 293(50): 19492-19500, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30333234

ABSTRACT

Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate-acetate/proton symporter in Escherichia coli However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from E. coli at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.


Subject(s)
Escherichia coli Proteins/chemistry , Organic Anion Transporters/chemistry , Protein Multimerization , Binding Sites , Crystallography, X-Ray , Escherichia coli , Escherichia coli Proteins/metabolism , Models, Molecular , Organic Anion Transporters/metabolism , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...