Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 598(7879): 188-194, 2021 10.
Article in English | MEDLINE | ID: mdl-34616074

ABSTRACT

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Subject(s)
Basal Ganglia/cytology , Cerebral Cortex/cytology , Neural Pathways , Neurons/cytology , Thalamus/cytology , Animals , Basal Ganglia/anatomy & histology , Cerebral Cortex/anatomy & histology , Male , Mice , Mice, Inbred C57BL , Thalamus/anatomy & histology
2.
Nat Commun ; 12(1): 4004, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183678

ABSTRACT

The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.


Subject(s)
Superior Colliculi/anatomy & histology , Superior Colliculi/physiology , Vision, Ocular/physiology , Visual Perception/physiology , Animals , Basal Ganglia/physiology , Cognition/physiology , Male , Mice , Mice, Inbred C57BL , Visual Pathways
3.
Nat Commun ; 12(1): 2859, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001873

ABSTRACT

The basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


Subject(s)
Action Potentials/physiology , Basolateral Nuclear Complex/physiology , Fear/physiology , Nerve Net/physiology , Neurons/physiology , Algorithms , Animals , Basolateral Nuclear Complex/cytology , Fear/psychology , Female , Male , Mice, Inbred C57BL , Models, Neurological , Nerve Net/cytology , Optogenetics/methods
4.
Nat Neurosci ; 21(11): 1628-1643, 2018 11.
Article in English | MEDLINE | ID: mdl-30297807

ABSTRACT

Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases such as Alzheimer's disease. Physiological studies in humans and rodents have suggested that there is both structural and functional heterogeneity along the longitudinal axis of the hippocampus. However, the recent discovery of discrete gene expression domains in the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns in mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, previously unknown subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project ( http://www.mouseconnectome.org ) tract tracing data. Our results define the hippocampus' multiscale network organization and elucidate each subnetwork's unique brain-wide connectivity patterns.


Subject(s)
Brain/physiology , Connectome , Hippocampus/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Gene Expression , Mice , Neural Pathways/physiology
5.
Cell Metab ; 28(1): 55-68.e7, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29861386

ABSTRACT

Classical mechanisms through which brain-derived molecules influence behavior include neuronal synaptic communication and neuroendocrine signaling. Here we provide evidence for an alternative neural communication mechanism that is relevant for food intake control involving cerebroventricular volume transmission of the neuropeptide melanin-concentrating hormone (MCH). Results reveal that the cerebral ventricles receive input from approximately one-third of MCH-producing neurons. Moreover, MCH cerebrospinal fluid (CSF) levels increase prior to nocturnal feeding and following chemogenetic activation of MCH-producing neurons. Utilizing a dual viral vector approach, additional results reveal that selective activation of putative CSF-projecting MCH neurons increases food intake. In contrast, food intake was reduced following immunosequestration of MCH endogenously present in CSF, indicating that neuropeptide transmission through the cerebral ventricles is a physiologically relevant signaling pathway for energy balance control. Collectively these results suggest that neural-CSF volume transmission signaling may be a common neurobiological mechanism for the control of fundamental behaviors.


Subject(s)
Cerebral Ventricles/metabolism , Eating/psychology , Feeding Behavior/physiology , Hypothalamic Hormones/cerebrospinal fluid , Melanins/cerebrospinal fluid , Neurons/metabolism , Pituitary Hormones/cerebrospinal fluid , Animals , Male , Neuropeptides/metabolism , Rats , Rats, Sprague-Dawley , Synaptic Transmission
6.
Nat Neurosci ; 19(8): 1100-14, 2016 08.
Article in English | MEDLINE | ID: mdl-27322419

ABSTRACT

Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders.


Subject(s)
Basal Ganglia/physiology , Cerebral Cortex/physiology , Neural Pathways/physiology , Animals , Male , Mice, Inbred C57BL , Models, Animal
7.
Cell ; 156(5): 1096-111, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24581503

ABSTRACT

Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.


Subject(s)
Cerebral Cortex/physiology , Connectome , Mice/physiology , Neural Pathways , Animals , Behavior, Animal , Male , Mice, Inbred C57BL
8.
Front Neuroanat ; 6: 30, 2012.
Article in English | MEDLINE | ID: mdl-22891053

ABSTRACT

We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP) at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org). Systematic double coinjections were made into different regions of the main olfactory bulb (MOB) and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent) currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections.

9.
PLoS One ; 6(12): e29132, 2011.
Article in English | MEDLINE | ID: mdl-22216183

ABSTRACT

The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start). This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5-2.0 Hz. A more extended form (termed "short-term habituation" here), which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block). We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs), whereas the rapid form does not.


Subject(s)
Larva/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Zebrafish/growth & development , Animals , Behavior, Animal , Excitatory Amino Acid Antagonists/pharmacology , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...