Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(27): eadd2348, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37406127

ABSTRACT

To better understand unexpectedly low plastic loads at the ocean's surface compared with inputs, unidentified sinks must be located. Here, we present the microplastic (MP) budget for multi-compartments in the western Arctic Ocean (WAO) and demonstrate that Arctic sediments serve as important current and future sinks for MPs missing from the global budget. We identified an increase of 3% year-1 in MP deposition from sediment core observations. Relatively elevated MP abundances were found in seawater and surface sediments around the summer sea ice retreat region, implying enhanced MP accumulation and deposition facilitated by the ice barrier. We estimate 15.7 ± 2.30 × 1016 N and 0.21 ± 0.14 MT as total MP loads in the WAO with 90% (by mass) buried in the post-1930 sediments, which exceeds the global average of the current marine MP load. The slower increase in plastic burial versus production implies a lag in plastic delivery to the Arctic, indicating more pollution in the future.

2.
Mar Pollut Bull ; 189: 114734, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36842279

ABSTRACT

Microplastics (MPs) are found in every ocean and are frequently ingested by marine animals. This study analyzed MPs in the stomachs and intestines of 12 large marine animals comprising one fin whale (Balaenoptera physalus), seven finless porpoises (Neophocaena asiaeorientalis), two loggerhead turtles (Caretta caretta), one Indo-Pacific bottlenose dolphin (Tursiops aduncus), and one common dolphin (Delphinus delphis) that were stranded off the Republic of Korea between 2019 and 2021. MPs were detected with a mean abundance of 3.42 ± 3.2 items/g and were predominantly of transparent-white, fragment-shaped polypropylene smaller than 200 µm. The abundance of MPs found did not correlate with the biological information (maturity, body length) of the finless porpoises and there were no significant differences in the abundance of MPs between the stomachs and intestines. These results cannot accurately assess the impact of MPs on large marine animals, so further studies are necessary to understand how MPs can potentially affect them.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Porpoises , Animals , Microplastics , Plastics
3.
J Hazard Mater ; 402: 123743, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254769

ABSTRACT

Increasing concern of human exposure to microplastics (MPs) necessitates an assessment of the quality of MP data relevant to human exposure. In this literature review for table salt, we addressed the variability and uncertainty of MP data caused by different analytical methods among studies. Additionally, validation experiment was conducted to identify and correct uncertainties related to MP size. When combined without validation, salt data in literature (n = 150) showed a wide range of 0-39800 (1386 ±â€¯5477) MPs kg-1. All procedures, including sample treatment, MP identification, and quality assurance were related to this variability. Most serious variability originated from the MP identification methods associated with minimum cut-off size of targeted/measured MPs and the selection of particles identified. When not corrected by size, MP content differed by 10-600 times among MP identification methods, with greatest value from visual observation, followed by FTIR and Raman methods. Meanwhile, there was a significant correlation-regardless of identification method-between logarithmic mean abundances and minimum cut-off sizes. The size-corrected values showed that adults intake up to 19000 MPs ≥10 µm annually via table salt, compared with 5100 MPs that was estimated from uncorrected mean abundance. Our validation experiment also showed the possibility of serious errors being caused by arbitrary selection of "MP-like particles" in spectroscopic analysis, specifically for smaller-sized particles. A combination of unverified data originated from different methods might have failed to adequately produce reliable human health-relevant results, thereby undermining the ability to quantify human risk.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring , Humans , Plastics , Salts , Sodium Chloride, Dietary , Uncertainty , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...