Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898275

ABSTRACT

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.

2.
Angew Chem Int Ed Engl ; 63(26): e202402140, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38650440

ABSTRACT

Alkylamines form the backbone of countless nitrogen-containing small molecules possessing desirable biological properties. Despite advances in amine synthesis through transition metal catalysis and photoredox chemistry, multicomponent reactions that leverage inexpensive materials to transform abundant chemical feedstocks into three-dimensional α-substituted alkylamines bearing complex substitution patterns remain scarce. Here, we report the design of a catalyst-free electroreductive manifold that merges amines, carbonyl compounds and carbon-based radical acceptors under ambient conditions without rigorous exclusion of air and moisture. Key to this aminative carbofunctionalization process is the chemoselective generation of nucleophilic α-amino radical intermediates that readily couple with electrophilic partners, providing straightforward access to architecturally intricate alkylamines and drug-like scaffolds which are inaccessible by conventional means.

3.
Chem Soc Rev ; 52(9): 2946-2991, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37016986

ABSTRACT

Alkene functionalisation is a powerful strategy that has enabled access to a wide array of compounds including valuable pharmaceuticals and agrochemicals. The reactivity of the alkene π-bond has allowed incorporation of a diverse range of atoms and functional groups through a wide variety of reaction pathways. N-Heterocyclic carbenes (NHCs) are a class of persistent carbenes that are widely employed as ancillary ligands due to their ability to act as strong σ-donors compared to widely-applied conventional phosphine-based ligands. NHCs are also unique as their molecular bulk provides steric influence for regio- and stereo-control in many alkene functionalisation reactions, illustrated by the examples covered in this review. A combination of the unique reactivity of NHC ligands and nickel's characteristics has facilitated the design of reaction pathways that show distinct selectivity and reactivity, including the activation of bonds previously considered "inert", such as C-H bonds, the C-O bond of ethers and esters, and the C-N bonds of amides. This review summarises the advancements in Ni(NHC) catalysed alkene functionalisation up to 2022, covering the following major reaction classes: Heck-type reactions, hydrofunctionalisation and dicarbofunctionalisation.

4.
Angew Chem Int Ed Engl ; 62(18): e202301081, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36881462

ABSTRACT

Stereoselective C-glycosylation reactions are increasingly gaining attention in carbohydrate chemistry because they enable glycosyl precursors, readily accessible as anomeric mixtures, to converge to a single diastereomeric product. However, controlling the stereochemical outcome through transition-metal catalysis remains challenging, and methods that leverage bench-stable heteroaryl glycosyl sulfone donors to facilitate glycosylation are rare. Herein, we show two complementary nonprecious metal catalytic systems, based on iron or nickel, which are capable of promoting efficient C-C coupling between heteroaryl glycosyl sulfones and aromatic nucleophiles or electrophiles through distinct mechanisms and modes of activation. Diverse C-aryl glycosides were secured with excellent selectivity, scope, and functional-group compatibility, and reliable access to both α and ß isomers was possible for key sugar residues.

5.
Plant Physiol Biochem ; 130: 577-588, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30114676

ABSTRACT

The objective of this study was to reveal the physiological and molecular mechanisms of low-nitrogen (N) tolerance in transgenic plant lines containing C4 phosphoenolpyruvate carboxylase (C4-PEPC) gene. The transgenic rice lines only over-expressing the maize C4-PEPC) (PC) and their untransformed wild type, Kitaake (WT), were used in this study. At different N levels, the dry weight, total N content, carbon and N levels, photorespiration-related enzymatic activities, gene expression levels and photorespiration-related product accumulations were measured, as were the transgenic lines' agronomic traits. The PC line, having lower total N and higher soluble sugar contents, was more tolerant to low-N stress than WT, which was consistent with its higher PEPC and lower N-assimilation-related enzyme activity levels. The photosynthetic parameters, enzymatic activity levels, transcripts and products related to photorespiration in PC were also greater than in WT under low-N conditions. This study showed that increased carbon levels in transgenic rice lines overexpressing C4-PEPC could help regulate the photorespiratory pathway under low-N conditions, conferring low-N tolerance and a higher grain yield per plant.


Subject(s)
Nitrogen/deficiency , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis , Gene Expression Regulation, Plant , Genes, Plant , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Plants, Genetically Modified , Stress, Physiological , Zea mays/enzymology , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...