Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 773
Filter
1.
Front Nutr ; 11: 1367589, 2024.
Article in English | MEDLINE | ID: mdl-38706565

ABSTRACT

Introduction: Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods: The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion: Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.

2.
J Biochem Mol Toxicol ; 38(6): e23743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816989

ABSTRACT

UBE2T is an oncogene in varying tumors, including lung adenocarcinoma (LUAD). SORBS3 is an important signaling regulatory protein that plays a crucial role in many cancers. This study aimed to investigate whether UBE2T promoted LUAD development by mediating the ubiquitination of SORBS3 and further explore its mechanism. Bioinformatics analysis was conducted to examine the expression of SORBS3 in LUAD tissues. Cell Counting Kit-8, Transwell, and flow cytometry were employed to analyze the cellular functions of SORBS3. Co-immunoprecipitation and ubiquitination analysis were employed to observe the correlation between UBE2T and SORBS3. In vitro and in vivo experiments verified the role of UBE2T in mediating SORBS3 ubiquitination to enhance interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling and promote LUAD development. We observed significant downregulation of SORBS3 in LUAD tissues and cells. Furthermore, SORBS3 inhibited the proliferation, migration, and invasion of LUAD cells, while facilitating apoptosis in vitro. UBE2T enhanced IL-6/STAT3 signaling by mediating ubiquitination and degradation of SORBS3, thereby promoting LUAD progression. Additionally, this mechanism was further validated in the xenograft animal model in vivo. This study confirmed that UBE2T-mediated SORBS3 ubiquitination enhanced IL-6/STAT3 signaling and promoted LUAD progression, providing a novel therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Interleukin-6 , Lung Neoplasms , STAT3 Transcription Factor , Signal Transduction , Ubiquitin-Conjugating Enzymes , Ubiquitination , Humans , STAT3 Transcription Factor/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Interleukin-6/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Mice , Mice, Nude , Disease Progression , Cell Line, Tumor , Female , Mice, Inbred BALB C , Cell Proliferation , Male
3.
Front Aging Neurosci ; 16: 1400544, 2024.
Article in English | MEDLINE | ID: mdl-38808033

ABSTRACT

As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that ß-amyloid protein (Aß) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aß protein antibodies is not satisfactory, suggesting that Aß amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aß (AßO) in 1998, scientists began to focus on the neurotoxicity of AßOs. As an endogenous neurotoxin, the active growth of AßOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AßOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AßO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AßOs and elucidates how AßOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.

4.
Fitoterapia ; 176: 105984, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38701870

ABSTRACT

A phytochemical study of the ethanol extract from Ailanthus altissima (Mill.) Swingle leaves resulted in the isolation of four new monoterpenoids (1-3, 5). The structures were elucidated using HRESIMS data, NMR spectroscopic data, quantum chemical calculations for NMR and ECD, and custom DP4+ probability analysis. Additionally, the absolute configuration of sugar was determined by acid hydrolysis. Compounds 1-4 are cyclogeraniane monocyclic monoterpenes, while compound 5 contains an acyclic mycrane monoterpenes skeleton. Anti-tyrosinase, anti-acetylcholinesterase, and anti-butyrylcholinesterase activities were tested. Compound 1 showed notable anti-acetylcholinesterase activity, and compound 3 exhibited significant inhibitory effects on anti-tyrosinase activity. Furthermore, the potential binding sites of compounds 1 and 3 were predicted by molecular docking.

5.
Future Sci OA ; 10(1): FSO915, 2024.
Article in English | MEDLINE | ID: mdl-38817367

ABSTRACT

Wilms' tumor is a rare type of tumor in adult. Herein, we reported a case of 37-year-old female with adult Wilms' tumor (AWT) admitted in our institution. After a multidisciplinary team discussion, she underwent receiving immunotherapy plus chemotherapy and VEGF-targeted therapy. The tumor got smaller obviously after eight cycles of treatment. Our present case suggested that immunotherapy and anti-angiogenesis combined with chemotherapy is promising new approach for treating AWT. Moreover, we review the literatures reporting AWT with the purpose to improve the understanding of AWT treatment.


A 37-year-old woman discovered a huge renal mass with multiple lymph node metastases. After ultrasound-guided needle biopsy of tumor tissue in the right kidney, she was found to be a rare adult Wilms' tumor. After a multidisciplinary team discussion, she underwent systemic therapy. Then, we gave her two cycles of treatment, as the tumor got smaller. Then, we continued to give her six cycles of treatment. Now, she is in good condition.

6.
J Ethnopharmacol ; 331: 118287, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705429

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular and cerebrovascular diseases are the leading causes of death worldwide and interact closely with each other. Danhong Injection (DHI) is a widely used preparation for the co-treatment of brain and heart diseases (CTBH). However, the underlying molecular endotype mechanisms of DHI in the CTBH remain unclear. AIM OF THIS STUDY: To elucidate the underlying endotype mechanisms of DHI in the CTBH. MATERIALS AND METHODS: In this study, we proposed a modular-based disease and drug-integrated analysis (MDDIA) strategy for elucidating the systematic CTBH mechanisms of DHI using high-throughput transcriptome-wide sequencing datasets of DHI in the treatment of patients with stable angina pectoris (SAP) and cerebral infarction (CI). First, we identified drug-targeted modules of DHI and disease modules of SAP and CI based on the gene co-expression networks of DHI therapy and the protein-protein interaction networks of diseases. Moreover, module proximity-based topological analyses were applied to screen CTBH co-module pairs and driver genes of DHI. At the same time, the representative driver genes were validated via in vitro experiments on hypoxia/reoxygenation-related cardiomyocytes and neuronal cell lines of H9C2 and HT22. RESULTS: Seven drug-targeted modules of DHI and three disease modules of SAP and CI were identified by co-expression networks. Five modes of modular relationships between the drug and disease modules were distinguished by module proximity-based topological analyses. Moreover, 13 targeted module pairs and 17 driver genes associated with DHI in the CTBH were also screened. Finally, the representative driver genes AKT1, EDN1, and RHO were validated by in vitro experiments. CONCLUSIONS: This study, based on clinical sequencing data and modular topological analyses, integrated diseases and drug targets. The CTBH mechanism of DHI may involve the altered expression of certain driver genes (SRC, STAT3, EDN1, CYP1A1, RHO, RELA) through various enriched pathways, including the Wnt signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Protein Interaction Maps , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Humans , Animals , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/genetics , Gene Regulatory Networks/drug effects , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Transcriptome/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Injections
7.
PeerJ ; 12: e17380, 2024.
Article in English | MEDLINE | ID: mdl-38799063

ABSTRACT

As the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), the progression of nonalcoholic steatohepatitis (NASH) is associated with disorders of glycerophospholipid metabolism. Scoparone is the major bioactive component in Artemisia capillaris which has been widely used to treat NASH in traditional Chinese medicine. However, the underlying mechanisms of scoparone against NASH are not yet fully understood, which hinders the development of effective therapeutic agents for NASH. Given the crucial role of glycerophospholipid metabolism in NASH progression, this study aimed to characterize the differential expression of glycerophospholipids that is responsible for scoparone's pharmacological effects and assess its efficacy against NASH. Liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) was performed to get the concentrations of glycerophospholipids, clarify mechanisms of disease, and highlight insights into drug discovery. Additionally, pathologic findings also presented consistent changes in high-fat diet-induced NASH model, and after scoparone treatment, both the levels of glycerophospholipids and histopathology were similar to normal levels, indicating a beneficial effect during the observation time. Altogether, these results refined the insights on the mechanisms of scoparone against NASH and suggested a route to relieve NASH with glycerophospholipid metabolism. In addition, the current work demonstrated that a pseudotargeted lipidomic platform provided a novel insight into the potential mechanism of scoparone action.


Subject(s)
Coumarins , Glycerophospholipids , Lipidomics , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Glycerophospholipids/metabolism , Coumarins/pharmacology , Coumarins/therapeutic use , Lipidomics/methods , Mice , Chromatography, Liquid/methods , Male , Disease Models, Animal , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Mass Spectrometry/methods , Lipid Metabolism/drug effects
8.
Sci Rep ; 14(1): 9086, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643222

ABSTRACT

The survival significance of the number of positive lymph nodes in salivary gland carcinoma remains unclear. Thus, the current study aimed to determine the effect of the number of positive lymph nodes on disease-specific survival (DSS) and overall survival (OS) in cN0 mucoepidermoid carcinoma (MEC) of the major salivary gland. Patients surgically treated for MEC of the major salivary gland between 1975 and 2019 were retrospectively enrolled from the surveillance, epidemiology, and end results database. The total population was randomly divided into training and test groups (1:1). Primary outcome variables were DSS and OS. Prognostic models were constructed based on the independent prognostic factors determined using univariate and multivariate Cox analyses in the training group and were validated in the test group using C-index. A total of 3317 patients (1624 men and 1693 women) with a mean age of 55 ± 20 years were included. The number of positive lymph nodes was an independent prognostic factor for both DSS and OS, but the effect began when at least two positive lymph nodes for DSS and three positive lymph nodes for OS were found. Predictive models for DSS and OS in the training group had C-indexes of 0.873 (95% confidence interval [CI] 0.853-0.893) and 0.835 (95% CI 0.817-0.853), respectively. The validation of the test group showed C-indexes of 0.877 (95% CI 0.851-0.902) for DSS and 0.820 (95% CI 0.798-0.842) for OS. The number of positive lymph nodes was statistically associated with survival in cN0 major salivary gland MEC. The current prognostic model could provide individualized follow-up strategies for patients with high reliability.


Subject(s)
Carcinoma, Mucoepidermoid , Salivary Gland Neoplasms , Male , Humans , Female , Adult , Middle Aged , Aged , Carcinoma, Mucoepidermoid/surgery , Retrospective Studies , Reproducibility of Results , Salivary Glands/pathology , Prognosis , Salivary Gland Neoplasms/pathology , Lymph Nodes/pathology , Neoplasm Staging
9.
Horm Metab Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574667

ABSTRACT

The aim of the study was to explore the clinical features related to early hypothyroidism and the relationship between the changes of thyrotropin receptor antibodies (TRAb) and early hypothyroidism in the course of 131I treatment for Graves' disease. This study was a retrospective observation, including 226 patients who received the first 131I treatment. The general information and laboratory tests were collected before and after 131I treatment, and the laboratory data affecting the difference in disease outcome were analyzed. According to the changes of antibodies in the third month, whether the changes of antibodies were involved in the occurrence of early-onset hypothyroidism was analyzed. Early onset hypothyroidism occurred in 165 of 226 patients, and the results showed that the incidence of early hypothyroidism was higher in patients with low baseline TRAb level (p=0.03) and increased TRAb after treatment (p=0.007). Both baseline TRAb levels (p<0.001) and the 24-hour iodine uptake rate (p=0.004) are significant factors influencing the changes in TRAb. The likelihood of a rise in TRAb was higher when the baseline TRAb was less than 18.55 U/l and the 24-hour iodine uptake level exceeded 63.61%. Low baseline and elevated post-treatment levels of TRAb were significantly associated with early-onset hypothyroidism after 131I treatment. Monitoring this index during RAI treatment is helpful in identifying early-onset hypothyroidism and mastering the clinical outcome and prognosis of Graves' disease.

10.
Inorg Chem ; 63(17): 7770-7779, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38608286

ABSTRACT

Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.

11.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38682180

ABSTRACT

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Subject(s)
Adenocarcinoma of Lung , CD8-Positive T-Lymphocytes , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Female , Humans , Male , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycolysis , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Tumor Escape/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
12.
Pharm Res ; 41(4): 807-817, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443629

ABSTRACT

OBJECTIVE: Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS: Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS: PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS: Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.


Subject(s)
Nanoparticles , Retina , Mice , Animals , Stargardt Disease/genetics , Stargardt Disease/metabolism , Stargardt Disease/therapy , Retina/metabolism , Genetic Therapy/methods , Plasmids/genetics , DNA/metabolism , Mice, Knockout , Polyethylene Glycols/metabolism , Intravitreal Injections , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism
13.
Biomed Opt Express ; 15(3): 1418-1427, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495721

ABSTRACT

Terahertz waves are known for their bio-safety and spectral fingerprinting features, and terahertz spectroscopy technology holds great potential for both qualitative and quantitative identification in the biomedical field. There has been a substantial amount of research utilizing this technology in conjunction with machine learning algorithms for substance identification. However, due to the strong absorption of water for terahertz waves, the single-dimensional features of the sample become indistinct, thereby diminishing the efficiency of the algorithmic recognition. Building upon this, we propose a method that employs terahertz time-domain spectroscopy (THz-TDS) in conjunction with multidimensional feature spectrum identification for the detection of blood sugar and glucose mixtures. Our research indicates that combining THz-TDS with multidimensional feature spectrum and linear discriminant analysis (LDA) algorithms can effectively identify glucose concentrations and detect adulteration. By integrating the multidimensional feature spectrum, the identification success rate increased from 68.9% to 96.0%. This method offers an economical, rapid, and safe alternative to traditional methods and can be applied in blood sugar monitoring, sweetness assessment, and food safety.

14.
Biomed Pharmacother ; 174: 116500, 2024 May.
Article in English | MEDLINE | ID: mdl-38555815

ABSTRACT

Chrysin is a natural flavonoid with powerful neuroprotective capacity. Cerebral ischemia/reperfusion injury (CIRI) is associated with oxidative stress and ferroptosis. Hypoxia-inducible factor 1α (HIF-1α) and ceruloplasmin (CP) are the critical targets for oxidation reactions and iron transport. But the regulatory mechanism between them is still unclear. Transient middle cerebral artery occlusion (tMCAO) model in rats and oxygen and glucose deprivation/re-oxygenation (OGD/R) model in PC12 cells were applied. Pathological tissue staining and biochemical kit were used to evaluate the effect of chrysin. The relationship between HIF-1α and CP was verified by transcriptomics, qRT-PCR and Western blot. In CIRI, HIF-1α/CP loop was discovered to be the regulatory pathway of ferroptosis. CIRI led to activation and nuclear translocation of HIF-1α, which promoted CP transcription and translation, and downstream ferroptosis. Inhibition of HIF-1α had opposite effect on CP and ferroptosis regulation. Overexpression of CP increased the expression of HIF-1α, nevertheless, inhibited the nuclear translocation of HIF-1α and alleviated CIRI. Silencing CP promoted HIF-1α elevation in nucleus and aggravated CIRI. Mechanistically, chrysin restrained HIF-1α nuclear translocation, thereby inhibiting CP transcription and translation, which in turn reduced downstream HIF-1α expression and mitigated ferroptosis in CIRI. Our results highlight chrysin restrains ferroptosis in CIRI through HIF-1α/CP loop.


Subject(s)
Ceruloplasmin , Ferroptosis , Flavonoids , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Reperfusion Injury , Flavonoids/pharmacology , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Rats , PC12 Cells , Male , Ceruloplasmin/metabolism , Ceruloplasmin/genetics , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Neuroprotective Agents/pharmacology , Signal Transduction/drug effects
15.
J Ovarian Res ; 17(1): 59, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481236

ABSTRACT

OBJECTIVE: To investigate the clinical and magnetic resonance imaging (MRI) features for preoperatively discriminating  primary ovarian mucinous malignant tumors (POMTs) and metastatic mucinous carcinomas involving the ovary (MOMCs). METHODS: This retrospective multicenter study enrolled 61 patients with 22 POMTs and 49 MOMCs, which were pathologically proved between November 2014 to Jane 2023. The clinical and MRI features were evaluated and compared between POMTs and MOMCs. Univariate and multivariate analyses were performed to identify the significant variables between the two groups, which were then incorporated into a predictive nomogram, and ROC curve analysis was subsequently carried out to evaluate diagnostic performance. RESULTS: 35.9% patients with MOMCs were discovered synchronously with the primary carcinomas; 25.6% patients with MOMCs were bilateral, and all of the patients with POMTs were unilateral. The biomarker CEA was significantly different between the two groups (p = 0.002). There were significant differences in the following MRI features: tumor size, configuration, enhanced pattern, the number of cysts, honeycomb sign, stained-glass appearance, ascites, size diversity ratio, signal diversity ratio. The locular size diversity ratio (p = 0.005, OR = 1.31), and signal intensity diversity ratio (p = 0.10, OR = 4.01) were independent predictors for MOMCs. The combination of above independent criteria yielded the largest area under curve of 0.922 with a sensitivity of 82.3% and specificity of 88.9%. CONCLUSIONS: Patients with MOMCs were more commonly bilaterally and having higher levels of CEA, but did not always had a malignant tumor history. For ovarian mucin-producing tumors, the uniform locular sizes and signal intensities were more predict MOMCs.


Subject(s)
Adenocarcinoma, Mucinous , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/surgery , Carcinoma, Ovarian Epithelial/diagnosis , Adenocarcinoma, Mucinous/diagnostic imaging , Adenocarcinoma, Mucinous/surgery , Mucins , Diagnosis, Differential
16.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38445728

ABSTRACT

We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.

17.
Biomed Opt Express ; 15(2): 965-972, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404352

ABSTRACT

Blood sugar is an important biomedical parameter of diabetic patients. The current blood sugar testing is based on an invasive method, which is not very friendly for patients who require long-term monitoring, while the non-invasive method is still in the developing stage. In this paper, we design a non-invasive and highly sensitive terahertz wave detector with Co3Sn2S2 semimetal thin film to test sugar concentration. As different concentrations have inconsistent responses to terahertz wave, we can deduce the concentration of the sugar solution to realize real-time highly sensitive detection of blood sugar concentration. This novel method can be further expanded to 6 G edge intelligence for non-invasive and real-time monitoring of blood sugar, and promote the development of 6 G technology.

18.
JACS Au ; 4(1): 216-227, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38274263

ABSTRACT

Aqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect. Moreover, benefiting from the following secondary assembly confinement, such tight polypseudorotaxane G⊂CB[8] can further assemble with anionic polyelectrolyte PSS to yield uniform spherical nanoparticle, thereby significantly strengthening phosphorescence performance with an extended lifetime (i.e., 2.39 ms, c.f., 45.0 µs). Subsequently, the organic dye Rhodamine 800 serving as energy acceptor can be slightly doped into the polyelectrolyte assembly, which enables the occurrence of efficient phosphorescence energy transfer process with efficiency up to 80.1% at a high donor/acceptor ratio, and concurrently endows the final system with red-shifted and long-lived NIR emission (710 nm). Ultimately, the as-prepared assembly is successfully exploited as versatile imaging agent for NIR window labeling and detecting in living cells.

19.
Appl Opt ; 63(2): 459-466, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227243

ABSTRACT

The generation and control of the Goos-Hänchen (GH) shift is a vital step toward its realistic applications, but investigations have mainly been limited to the directional-dependent ones; i.e., the GH shift is reciprocal for two opposite propagating directions. Here, by designing the asymmetrical multilayered structure with three-dimensional bulky Dirac semimetal (BDS) films, we theoretically confirm the footprint of the pronounced directional-dependent GH shift, and that it can be switched by the Fermi energy of the BDS. In addition to this electric field induced switching, the period numbers of the unit cells in the asymmetrical structure can also modulate the directional-dependent GH shift. The asymmetrical feature of the multilayered structure dominantly causes the emergence of the directional-dependent GH shift. Our discovery related to the directional-dependent GH shift constitutes an important ingredient for directional-dependent optophotonic devices such as directional sensors, optical switches, and detectors.

20.
BMC Cancer ; 24(1): 100, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233798

ABSTRACT

BACKGROUND: Immunotherapy targeting PD-1/PD-L1 has revolutionized the treatment of extensive-stage small cell lung cancer (ES-SCLC). However, clinical trials suggest differential efficacy of anti-PD-1 agents and anti-PD-L1 agents in first-line treatment of ES-SCLC. This retrospective multicenter study aimed to compare the efficacy and safety of anti-PD-1 agents versus anti-PD-L1 agents in first-line treatment of ES-SCLC in real-world practice. METHODS: Patients with pathologically or cytologically confirmed ES-SCLC treated with platinum plus etoposide combined with anti-PD-1 or PD-L1 agents as first-line treatment in different centers of PLA General Hospital between January 2017 and October 2021 were included for this study. Survival outcomes and safety were compared between patients receiving anti-PD-1 and PD-L1 agents. RESULTS: Of the total 154 included patients, 68 received anti-PD-1 agents plus chemotherapy (PD-1 group), and 86 received anti-PD-L1 agents plus chemotherapy (PD-L1 group). Progression-free survival (PFS) and overall survival (OS) in the entire cohort were 7.6 months (95% confidence interval [CI]: 6.5-8.2 months) and 17.4 months (95% CI: 15.3-19.3 months), respectively. Median PFS and OS were comparable between the PD-1 group and PD-L1 group (PFS: 7.6 months vs. 8.3 months, HR = 1.13, 95% CI: 0.79-1.62, p = 0.415; OS: 26.9 months vs. 25.6 months, HR = 0.96, 95% CI: 0.63-1.47, p = 0.859. The objective response rate and disease control rate were comparable between the two groups: 79.4% vs. 79.1% and 92.6% vs. 94.2%, respectively. The 6-month, 12-month, and 18-month PFS and OS rates were slightly higher in the PD-L1 group than in the PD-1 group, while the 24-month PFS rate was slightly higher in the PD-1 group than in the PD-L1 group. Stratified analysis showed that locoregional thoracic radiotherapy and normal lactate dehydrogenase level were independent predictors of better OS in ES-SCLC patients treated with first-line chemotherapy plus ICI. Adverse events were not significantly different between the two groups. CONCLUSIONS: Anti-PD-1 agents and anti-PD-L1 agents combined with chemotherapy as first-line treatment for ES-SCLC are comparably effective and well tolerated.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , B7-H1 Antigen , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Retrospective Studies , Small Cell Lung Carcinoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...