Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Sustain Chem Eng ; 11(29): 10631-10639, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502770

ABSTRACT

The increasing energy demand for space cooling and environmental pollution caused by post-consumer plastic waste are two of the most challenging issues today. Passive daytime cooling, which dissipates heat to outer space without external energy input, has emerged recently as a sustainable technique for space cooling. In this work, a plastic waste-based passive daytime cooling foil is reported to alleviate both issues simultaneously. The mirror-like aluminum-plastic laminate (APL) waste exhibits a satisfactory solar reflectance of 85.7%. Combining the APL waste with a laminated pouch foil reveals a remarkably simple but effective plastic waste-based cooling foil with a high emissivity of 0.87 in the atmospheric window, resulting in a compelling daytime cooling performance. The sustainable aluminum-plastic laminate waste-based cooling foil is flexible, easily scalable, low-cost, and fabricated with a common laminator. This makes the fabrication of passive cooling materials possible even for nonexperts, which will help to provide advanced sun shelters and comfortable temperatures to a wider community.

2.
Langmuir ; 39(25): 8658-8667, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37310799

ABSTRACT

The impact of the particle size and wettability on the orientation and order of assemblies obtained by self-organization of functionalized microscale polystyrene cubes at the water/air interface is reported. An increase in the hydrophobicity of 10- and 5-µm-sized self-assembled monolayer-functionalized polystyrene cubes, as assessed by independent water contact angle measurements, led to a change of the preferred orientation of the assembled cubes at the water/air interface from face-up to edge-up and further to vertex-up, irrespective of microcube size. This tendency is consistent with our previous studies with 30-µm-sized cubes. However, the transitions among these orientations and the capillary force-induced structures, which change from flat plate to tilted linear and further to close-packed hexagonal arrangements, were observed to shift to larger contact angles for smaller cube size. Likewise, the order of the formed aggregates decreased significantly with decreasing cube size, which is tentatively attributed to the small ratio of inertial force to capillary force for smaller cubes in disordered aggregates, which results in more difficulties to reorient in the stirring process. Experiments with small fractions of larger cubes added to the water/air interface increased the order of smaller homo-aggregates to values similar to neat 30 µm cube assemblies. Hence, collisions of larger cubes or aggregates are shown to play a decisive role in breaking metastable structures to approach a global energy minimum assembly.

3.
Langmuir ; 39(21): 7388-7395, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37192464

ABSTRACT

The dependence of the preferred orientation of polystyrene microcubes on surface hydrophobicity at the water/hexadecane interface is reported. Similar to the water/air interfaces, the microcubes were shown to reside at the water/hexadecane interface with three distinct orientations: face-up, edge-up, and vertex-up. Concomitantly, ordered aggregates with flat plate, tilted linear, and close-packed hexagonal structures were formed, driven by capillary force. With increasing the hydrophobicity of five sides of the cubes, the preferential microcube orientation at the water/hexadecane interface changed sequentially from face-up to edge-up, to vertex-up, then back to edge-up, and to face-up. This dependence of the preferential microcube orientation on surface hydrophobicity at the water/hexadecane interface differs from that observed at the water/air interface, where the preferential orientation changed only from face-up to edge-up, then to vertex-up, as surface hydrophobicity increased. In addition, preformed microcube assemblies at the water/air interface could be dynamically reconfigured by replacing the air phase with hexadecane under stirring.

4.
Adv Sci (Weinh) ; 10(11): e2206616, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36793085

ABSTRACT

Passive radiative daytime cooling is an emerging technology contributing to carbon-neutral heat management. Optically engineered materials with distinct absorption and emission properties in the solar and mid-infrared range are at the heart of this technology. Owing to their low emissive power of about 100 W m-2 during daytime, substantial areas need to be covered with passive cooling materials or coatings to achieve a sizeable effect on global warming. Consequently, biocompatible materials are urgently needed to develop suitable coatings with no adverse environmental impact. It is shown how chitosan films with different thicknesses can be produced from slightly acidic aqueous solutions. The conversion to their insoluble form chitin in the solid state is demonstrated and the conversion is monitored with infrared (IR) and NMR spectroscopy. In combination with a reflective backing material, the films show below-ambient temperature cooling capabilities with a suitable emissivity in the mid-IR region and low solar absorption of 3.1-6.9%, depending on the film thickness. This work highlights the potential of chitosan and chitin as widely available biocompatible polymers for passive radiative cooling applications.

5.
Cell Rep Phys Sci ; 3(8): 100986, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36003305

ABSTRACT

Passive daytime cooling materials can lower global energy consumption owing to their autonomous cooling capability. Although a significant number of passive cooling materials have been developed recently, their performance characterization is still challenging. Field tests experience high variability due to uncontrollable changes in environmental conditions. Here, we design an indoor setup to characterize the performance of passive cooling materials reproducibly and independently of weather and season. Outdoor measurement conditions are approximated using a liquid-nitrogen-cooled aluminum dome, a solar simulator, and a wavelength-selective inverse sky-window filter. In contrast to outdoor measurements, the results of various reference materials show remarkable precision and repeatability. Additionally, the impact of solar light intensity and temperature on the passive cooling performance can be experimentally investigated. Our setup is a first step in the development of a standardized test method to bring accuracy, reproducibility, and comparability to the emerging field of passive cooling materials.

6.
Beilstein J Org Chem ; 15: 2552-2562, 2019.
Article in English | MEDLINE | ID: mdl-31728169

ABSTRACT

The permittivity of polymers and its spatial distribution play a crucial role in the behavior of thin films, such as those used, e.g., as sensor coatings. In an attempt to develop a conclusive approach to determine these quantities, the polarity of the model polymer poly(methyl methacrylate) (PMMA) in 600 nm thin films on a glass support was probed by the energy of the charge transfer transition in the oxazine dye Nile red (NR) at 25 °C. The absorption and fluorescence spectra of NR were observed to shift to the red with increasing solvent polarity, because of the intramolecular charge transfer character of the optical transition. New types of solvatochromic plots of emission frequency against absorption frequency and vice versa afforded the Onsager radius-free estimation of the ground and excited states dipole moment ratio. With this approach the values of these dipole moments of 11.97 D and 18.30-19.16 D, respectively, were obtained for NR. An effective local dielectric constant of 5.9-8.3 for PMMA thin films was calculated from the solvatochromic plot and the fluorescence maximum of NR observed in the PMMA films. The fluorescence band of NR in the rigid PMMA films shifted to the red by 130 cm-1 with increasing excitation wavelength from 470 to 540 nm, while in a series of liquids the position of the emission maximum of NR remained constant within same range of the excitation wavelength. It is concluded that the fluorescence spectrum of NR in PMMA undergoes inhomogeneous broadening due to different surroundings of NR molecules in the ground state and slow sub-glass transition (T g) relaxations in PMMA.

7.
Langmuir ; 35(20): 6742-6751, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31039608

ABSTRACT

The dependence of the orientation of microscale PS cubes, which are surface functionalized on only five faces, at the water/air interface and the ordered aggregates formed by capillary force assembly are reported. Depending on the wettability of the faces, the cubes were shown to adopt a preferred orientation that changes with decreasing wettability from face up to edge up and further to vertex up. Concomitantly, stable aggregates with different structures were formed by capillary force self-assembly. The unmodified bottom face of the cubes was localized by fluorescence labeling. Finally, self-sorting of differently surface functionalized microcubes was realized for the first time, due to the stronger capillary interactions of quadrupole-quadrupole and hexapole-hexapole interactions compared to quadrupole-hexapole interaction.

8.
Langmuir ; 35(24): 7791-7797, 2019 Jun 18.
Article in English | MEDLINE | ID: mdl-31122021

ABSTRACT

The systematic investigation of the dependence of the orientation and capillary interaction of hydrophobized polystyrene microcubes at the liquid/air interface on the surface tension of the aqueous subphase is reported. By decreasing the subphase surface tension, the preferential orientation of the cubes was observed to change independent of the surfactant type from the vertex up to the edge up and finally to the face up. Concomitantly, the structure of the aggregates obtained by cube assembly was observed to change from a close-packed hexagonal to tilted linear and finally to flat plate. In particular, the preferential orientation of the cubes was virtually independent of the surfactant charge at a constant surface tension. In addition, reconfigurable microcube assemblies at the liquid/air interface, which respond to the surface tension of the subphase, were observed for the first time. The dynamic reconfigurability of preformed microcube aggregates induced by adding surfactant to the subphase may open new pathways to dynamic assemblies at liquid/air interfaces, which may be interesting, e.g., for sensing applications.

9.
Bioorg Chem ; 87: 688-698, 2019 06.
Article in English | MEDLINE | ID: mdl-30953888

ABSTRACT

Sanggenon O (SO) is a Diels-Alder type adduct extracted fromMorus alba, which has been used for its anti-inflammatory action in the Oriental medicine. However, whether it has regulatory effect on human cancer cell proliferation and what the underlying mechanism remains unknown. Here, we found that SO could significantly inhibit the growth and proliferation of A549 cells and induce its pro-apoptotic action through a caspase-dependent pathway. It could also impair the mitochondria which can be reflected by mitochondrial membrane permeabilization. Besides, SQSTM1 up-regulation and autophagic flux measurement demonstrated that exposure to SO led to autophagosome accumulation, which plays a protective role in SO-treated cells. In addition, knocking down of LC3B increased SO triggered apoptotic cell rates. These results indicated that SO has great potential as a promising candidate combined with autophagy inhibitor for the treatment of NSCLC. In conclusion, our results identified a novel mechanism by which SO exerts potent anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Flavonoids/pharmacology , Protective Agents/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flavonoids/chemical synthesis , Flavonoids/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Conformation , Molecular Docking Simulation , Protective Agents/chemical synthesis , Protective Agents/chemistry , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Angew Chem Int Ed Engl ; 58(16): 5246-5250, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30758115

ABSTRACT

A new concept enables the generation of cell microenvironments by microobject assembly at an water/air interface. As the orientation of 30 µm sized polymer cubes and their capillary force assembly are controlled by the surface wettability, which in turn can be modulated by coating the initially exposed surfaces with gold and self-assembled monolayers, unique niches in closely packed arrays of cubes with vertex up orientation can be realized. The random assembly of distinctly different cubes, prefunctionalized or surface-structured exclusively on their top surface, facilitates the parallel generation of different microenvironments in a combinatorial manner, which paves the way to future systematic structure-property relationship studies with cells.


Subject(s)
Pancreatic Neoplasms/pathology , Polymers/chemistry , Humans , Molecular Structure , Particle Size , Structure-Activity Relationship , Surface Properties , Tumor Cells, Cultured , Wettability
11.
J Pharm Biomed Anal ; 162: 9-15, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30219599

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic messenger RNA (mRNA). Until now, two RNA demethylases have been identified, including FTO (fat mass and obesity-associated protein) and ALKBH5 (α-ketoglutarate-dependent dioxygenase alkB homologue 5). As a mammalian m6A demethylase, ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles, and ALKBH5 may play a significant role in these biological processes. Nevertheless, no modulator of ALKBH5 has been reported. The reason for that may be the lack of in vitro assays for ALKBH5 inhibitor screening. Herein, we describe the development of two homogeneous assays for ALKBH5 using N6-methyladenosine as substrate with different principles. Using ALKBH5 recombinant, we developed a formaldehyde dehydrogenase coupled fluorescence based assay and an antibody based assay for the activity evaluation of ALKBH5. These robust coupled assays are suitable for screening ALKBH5 inhibitors in 384-well format (Z' factors of 0.74), facilitating the discovery of modulators in the quest for the regulation of biological processes.


Subject(s)
Adenosine/analogs & derivatives , Aldehyde Oxidoreductases/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , Drug Discovery/methods , Fluorescent Antibody Technique , Formaldehyde/metabolism , High-Throughput Screening Assays/methods , RNA, Messenger/metabolism , Adenosine/metabolism , Aldehyde Oxidoreductases/antagonists & inhibitors , AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors , Demethylation , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Reproducibility of Results , Spectrometry, Fluorescence
12.
Macromol Biosci ; 17(4)2017 04.
Article in English | MEDLINE | ID: mdl-27762494

ABSTRACT

Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes, which are known to suppress protein adsorption and prevent cell attachment, are reported here to possess interesting and tunable thermoresponsive behavior, if the brush thickness is reduced or the grafting density is altered. PDEGMA brushes with a dry ellipsometric thickness of 5 ± 1 nm can be switched from cell adherent behavior at 37 °C to cell nonadherent at 25 °C. This behavior coincides with the temperature-dependent irreversible adsorption of fibronectin from phosphate saline buffer and proteins present in the cell culture medium, as unveiled by surface plasmon resonance measurements. Unlike for tissue culture polystyrene reference surfaces, swelling of the PDEGMA chains below the lower critical solution temperature results in the absence of paxillin and actin containing cellular filaments responsible for cell attachment. These tunable properties of very thin homopolymer PDEGMA brushes render this system interesting as an alternative thermoresponsive layer for continuous cell culture or enzyme-free cell culture systems.


Subject(s)
Methylmethacrylate/chemistry , Polyethylene Glycols/chemistry , Adsorption , Cell Adhesion , Cell Line , Cell Survival , Fibronectins/metabolism , Kinetics , Microscopy, Fluorescence , Polymerization , Surface Plasmon Resonance , Temperature
13.
Langmuir ; 32(36): 9360-70, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27531168

ABSTRACT

This study reports on the dependence of the temperature-induced changes in the properties of thin thermoresponsive poly(diethylene glycol) methyl ether methacrylate (PDEGMA) layers of end-tethered chains on polymer thickness and grafting density. PDEGMA layers with a dry ellipsometric thickness of 5-40 nm were synthesized by surface-initiated atom transfer radical polymerization on gold. To assess the temperature-induced changes, the adsorption of bovine serum albumin (BSA) was investigated systematically as a function of film thickness, temperature, and grafting density by surface plasmon resonance (SPR), complemented by wettability and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. BSA adsorption on PDEGMA brushes is shown to differ significantly above and below an apparent transition temperature. This surface transition temperature was found to depend linearly on the PDEGMA thickness and changed from 35 °C at 5 nm thickness to 48 °C at 23 nm. Similarly, a change of the grafting density enables the adjustment of this transition temperature presumably via a transition from the mushroom to the brush regime. Finally, BSA that adsorbed irreversibly on polymer brushes at temperatures above the transition temperature can be desorbed by reducing the temperature to 25 °C, underlining the reversibly switchable properties of PDEGMA brushes in response to temperature changes.


Subject(s)
Ethers/chemistry , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Surface Plasmon Resonance/methods , Adsorption , Quartz Crystal Microbalance Techniques , Spectroscopy, Fourier Transform Infrared , Temperature , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...