Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Analyst ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712505

ABSTRACT

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.

2.
Arthritis Res Ther ; 26(1): 99, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741185

ABSTRACT

OBJECTIVES: This study aims to elucidate the transcriptomic signatures and dysregulated pathways in patients with Systemic Lupus Erythematosus (SLE), with a particular focus on those persisting during disease remission. METHODS: We conducted bulk RNA-sequencing of peripheral blood mononuclear cells (PBMCs) from a well-defined cohort comprising 26 remission patients meeting the Low Lupus Disease Activity State (LLDAS) criteria, 76 patients experiencing disease flares, and 15 healthy controls. To elucidate immune signature changes associated with varying disease states, we performed extensive analyses, including the identification of differentially expressed genes and pathways, as well as the construction of protein-protein interaction networks. RESULTS: Several transcriptomic features recovered during remission compared to the active disease state, including down-regulation of plasma and cell cycle signatures, as well as up-regulation of lymphocytes. However, specific innate immune response signatures, such as the interferon (IFN) signature, and gene modules involved in chromatin structure modification, persisted across different disease states. Drug repurposing analysis revealed certain drug classes that can target these persistent signatures, potentially preventing disease relapse. CONCLUSION: Our comprehensive transcriptomic study revealed gene expression signatures for SLE in both active and remission states. The discovery of gene expression modules persisting in the remission stage may shed light on the underlying mechanisms of vulnerability to relapse in these patients, providing valuable insights for their treatment.


Subject(s)
Lupus Erythematosus, Systemic , Transcriptome , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Humans , Female , Adult , Male , Middle Aged , Gene Expression Profiling/methods , Leukocytes, Mononuclear/metabolism , Protein Interaction Maps/genetics
3.
Front Immunol ; 15: 1410457, 2024.
Article in English | MEDLINE | ID: mdl-38765013

ABSTRACT

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Macaca fascicularis , Animals , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Mice, Transgenic , Apoptosis/drug effects , Antineoplastic Agents, Immunological/pharmacology , Membrane Glycoproteins
4.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747929

ABSTRACT

BACKGROUND: Female vulvovaginitis was one of the most common gynecological diseases. It had a great negative impact on their work and quality of life. This retrospective study evaluated the clinical and laboratory data of patients with vulvovaginitis in Hangzhou, China. To analyze the clinical situation, species distribution and antibiotic resistance of pathogenic fungi and bacteria in 626 cases of vulvovaginitis in Hangzhou. Microorganism culture, identification, and antibiotic susceptibility testing were conducted. The study aimed to provide a theoretical value for an effective treatment of vulvovaginitis. METHODS: In total, 626 outpatients and inpatients diagnosed with vulvovaginitis were selected from January 2018 to January 2023. Data of all the patients were collected from the hospital's electronic medical records. Vaginal secretion was collected for testing and SPSS 25.0 software was used to perform statistical analysis. RESULTS: A total of 626 strains of fungi, Gram-positive, and -negative bacteria were detected. Clinical situations of patients infected with the top five pathogenic fungi and bacteria were analyzed. Pathogenic fungi and bacteria were slightly different in each age group and in each onset time group. The results of antibiotic susceptibility testing showed that the resistance rates of itraconazole and fluconazole were high and Gram- negative and -positive bacteria were multidrug resistant. Gram-negative bacteria were more sensitive to carbenicillins and compound antibiotics, while Gram-positive bacteria were sensitive to rifampicin and daptomycin. MRSA and non vancomycin-resistant strains were detected. CONCLUSIONS: Fungi and bacteria were usually detected as pathogenes in patients with vulvovaginitis in Hangzhou. Some factors, such as age and onset time, often affected the incidence. Pathogenic fungi and bacteria were resistant to some common antibiotics, and clinical treatments should be carried out in a timely and reasonable manner according to the results of antibiotic susceptibility testing.


Subject(s)
Fungi , Microbial Sensitivity Tests , Vulvovaginitis , Humans , Female , China/epidemiology , Adult , Vulvovaginitis/microbiology , Vulvovaginitis/drug therapy , Vulvovaginitis/epidemiology , Vulvovaginitis/diagnosis , Retrospective Studies , Fungi/drug effects , Fungi/isolation & purification , Fungi/classification , Middle Aged , Young Adult , Adolescent , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Drug Resistance, Fungal , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Resistance, Bacterial , Aged
5.
Front Microbiol ; 15: 1383882, 2024.
Article in English | MEDLINE | ID: mdl-38633700

ABSTRACT

In the context of human activities and climate change, the gradual degradation of coastal water quality seriously threatens the balance of coastal and marine ecosystems. However, the spatiotemporal patterns of coastal water quality and its driving factors were still not well understood. Based on 31 water quality parameters from 2015 to 2020, a new approach of optimizing water quality index (WQI) model was proposed to quantitatively assess the spatial and temporal water quality along tropical Hainan Island, China. In addition, pollution sources were further identified by factor analysis and the effects of pollution source on water quality was finally quantitatively in our study. The results showed that the average water quality was moderate. Water quality at 86.36% of the monitoring stations was good while 13.53% of the monitoring stations has bad or very bad water quality. Besides, the coastal water quality had spatial and seasonal variation, along Hainan Island, China. The water quality at "bad" level was mainly appeared in the coastal waters along large cities (Haikou and Sanya) and some aquaculture regions. Seasonally, the average water quality in March, October and November was worse than in other months. Factor analysis revealed that water quality in this region was mostly affected by urbanization, planting and breeding factor, industrial factor, and they played the different role in different coastal zones. Waters at 10.23% of monitoring stations were at the greatest risk of deterioration due to severe pressure from environmental factors. Our study has significant important references for improving water quality and managing coastal water environment.

6.
Anal Chem ; 96(9): 3802-3809, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38381523

ABSTRACT

Fluoride anions (F-) play a crucial role in human physiological processes. However, excessive intake of F- would affect oxygen metabolism and promote the generation of oxygen-free radicals. Hence, it is essential to develop a precise and efficient fluorescent probe for visualizing F--induced oxidative stress. In this work, we developed the first bifunctional BODIPY-based fluorescent probe dfBDP with p-tert-butyldimethylsilanolate benzyl thioether as the sensing site for the detection of F- and HClO via two distinct reactions, the self-immolative removal and the thioether oxidation, which generate the sensing products with two nonoverlap fluorescence bands: 800-1200 and 500-750 nm, respectively. The probe dfBDP displays rapid response, high specificity, and sensitivity for the detection of F- (LOD, 316.2 nM) and HClO (LOD, 33.9 nM) in vitro. Cellular imaging reveals a correlation between F--induced oxidative stress and the upregulation of HClO. Finally, probe dfBDP was employed to detect F- and HClO in mice under the stimulation of F-. The experimental results display that the level of HClO elevates in the liver of mice.


Subject(s)
Boron Compounds , Fluorescent Dyes , Hypochlorous Acid , Mice , Humans , Animals , Hypochlorous Acid/metabolism , Sulfides , Oxygen
7.
Org Biomol Chem ; 22(4): 805-810, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38170477

ABSTRACT

A method involving a metal-free visible-light-promoted synthesis was developed for the construction of difluoroalkylated oxindoles with N-phenylacrylamides and bromodifluoroacetamides as starting materials in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA). Twenty-four examples of the photochemical reaction were successfully performed, with good yields (44-99%) and excellent substrate adaptability. Mechanistic studies showed that the visible-light-promoted reaction involved a radical addition to N-phenylacrylamide, intramolecular cyclization, dehydrogenation, and rearomatization. The difluoroacetamide radical was produced as a result of electron transfer to bromodifluoroacetamides from the electron donor TMEDA in their electron-donor-acceptor (EDA) complexes under visible light irradiation. This protocol is a promising photochemical method due to its advantages of mild conditions, simple operation, wide substrate scope and high yields. And the obtained products may have great potential in the field of medicine.

8.
New Phytol ; 241(2): 592-606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974487

ABSTRACT

Auxin signaling provides a promising approach to controlling root system architecture and improving stress tolerance in plants. However, how the auxin signaling is transducted in this process remains unclear. The Aux indole-3-acetic acid (IAA) repressor IAA17.1 is stabilized by salinity, and primarily expressed in the lateral root (LR) primordia and tips in poplar. Overexpression of the auxin-resistant form of IAA17.1 (IAA17.1m) led to growth inhibition of LRs, markedly reduced salt tolerance, increased reactive oxygen species (ROS) levels, and decreased flavonol content. We further identified that IAA17.1 can interact with the heat shock protein HSFA5a, which was highly expressed in roots and induced by salt stress. Overexpression of HSFA5a significantly increased flavonol content, reduced ROS accumulation, enhanced LR growth and salt tolerance in transgenic poplar. Moreover, HSFA5a could rescue the defective phenotypes caused by IAA17.1m. Expression analysis showed that genes associated with flavonol biosynthesis were altered in IAA17.1m- and HAFA5a-overexpressing plants. Furthermore, we identified that HSFA5a directly activated the expression of key enzyme genes in the flavonol biosynthesis pathway, while IAA17.1 suppressed HSFA5a-mediated activation of these genes. Collectively, the IAA17.1/HSFA5a module regulates flavonol biosynthesis, controls ROS accumulation, thereby modulating the root system of poplar to adapt to salt stress.


Subject(s)
Populus , Salt Tolerance , Reactive Oxygen Species/metabolism , Salt Stress , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plants, Genetically Modified/metabolism
9.
New Phytol ; 241(4): 1646-1661, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38115785

ABSTRACT

Perennial trees in boreal and temperate regions undergo growth cessation and bud set under short photoperiods, which are regulated by phytochrome B (phyB) photoreceptors and PHYTOCHROME INTERACTING FACTOR 8 (PIF8) proteins. However, the direct signaling components downstream of the phyB-PIF8 module remain unclear. We found that short photoperiods suppressed the expression of miR156, while upregulated the expression of miR156-targeted SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 16 (SPL16) and SPL23 in leaves and shoot apices of Populus trees. Accordingly, either overexpression of MIR156a/c or mutagenesis of SPL16/23 resulted in the attenuation of growth cessation and bud set under short days (SD), whereas overexpression of SPL16 and SPL23 conferred early growth cessation. We further showed that SPL16 and SPL23 directly suppressed FLOWERING LOCUS T2 (FT2) expression while promoted BRANCHED1 (BRC1.1 and BRC1.2) expression. Moreover, we revealed that PIF8.1/8.2, positive regulators of growth cessation, directly bound to promoters of MIR156a and MIR156c and inhibited their expression to modulate downstream pathways. Our results reveal a connection between the phyB-PIF8 module-mediated photoperiod perception and the miR156-SPL16/23-FT2/BRC1 regulatory cascades in SD-induced growth cessation. Our study provides insights into the rewiring of a conserved miR156-SPL module in the regulation of seasonal growth in Populus trees.


Subject(s)
Phytochrome , Populus , Photoperiod , Trees , Plant Proteins/metabolism , Seasons , Phytochrome/metabolism , Gene Expression Regulation, Plant
10.
Plant J ; 118(1): 42-57, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38112614

ABSTRACT

Drought stress caused by global warming has resulted in significant tree mortality, driving the evolution of water conservation strategies in trees. Although phytohormones have been implicated in morphological adaptations to water deficits, the molecular mechanisms underlying these processes in woody plants remain unclear. Here, we report that overexpression of PtoMYB142 in Populus tomentosa results in a dwarfism phenotype with reduced leaf cell size, vessel lumen area, and vessel density in the stem xylem, leading to significantly enhanced drought resistance. We found that PtoMYB142 modulates gibberellin catabolism in response to drought stress by binding directly to the promoter of PtoGA2ox4, a GA2-oxidase gene induced under drought stress. Conversely, knockout of PtoMYB142 by the CRISPR/Cas9 system reduced drought resistance. Our results show that the reduced leaf size and vessel area, as well as the increased vessel density, improve leaf relative water content and stem water potential under drought stress. Furthermore, exogenous GA3 application rescued GA-deficient phenotypes in PtoMYB142-overexpressing plants and reversed their drought resistance. By suppressing the expression of PtoGA2ox4, the manifestation of GA-deficient characteristics, as well as the conferred resistance to drought in PtoMYB142-overexpressing poplars, was impeded. Our study provides insights into the molecular mechanisms underlying tree drought resistance, potentially offering novel transgenic strategies to enhance tree resistance to drought.


Subject(s)
Drought Resistance , Populus , Gibberellins/metabolism , Populus/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Water/metabolism , Droughts , Plants, Genetically Modified/genetics
11.
Neuroscience Bulletin ; (6): 1-16, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010677

ABSTRACT

Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.


Subject(s)
Mice , Animals , Astrocytes , Neuroglia/physiology , Diencephalon , Brain , Neurons , Mammals
12.
Article in English | MEDLINE | ID: mdl-38141203

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with varying symptoms and multi-organ damage. Relapse-remission cycles often persist for many patients for years with the current treatment. Improved understanding of molecular changes caused by SLE flare and intensive treatment may result in more targeted therapies. METHODS: RNA-sequencing was performed on peripheral blood mononuclear cells (PBMCs) from 65 SLE patients in flare, collected both before (SLE1) and after (SLE2) in-hospital treatment, along with 15 healthy controls (HC). Differentially expressed genes (DEGs) were identified among the three groups. Enriched functions and key molecular signatures of the DEGs were analyzed and scored to elucidate the transcriptomic changes during treatment. RESULTS: Few upregulated genes in SLE1 vs HC were affected by treatment (SLE2 vs SLE1), mostly functional in interferon signalling (IFN), plasmablasts, and neutrophils. IFN and plasmablast signatures were repressed, but the neutrophil signature remained unchanged or enhanced by treatment. The IFN and neutrophil scores together stratified the SLE samples. IFN scores correlated well with leukopenia, while neutrophil scores reflected relative cell compositions but not cell counts. CONCLUSIONS: In-hospital treatment significantly relieved SLE symptoms with expression changes of a small subset of genes. Notably, IFN signature changes matched SLE flare and improvement, while enhanced neutrophil signature upon treatment suggested the involvement of low-density granulocytes (LDG) in disease development.

13.
Planta ; 259(1): 27, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112830

ABSTRACT

MAIN CONCLUSION: Integrated transcriptome and metabolome analysis have unveiled the physiological and molecular responses of rhubarb to infection by smut fungi. Rhubarb is an important medicinal plant that is easily infected by smut fungi during its growth. Thus far, no research on the influence of smut fungi on the growth of rhubarb and its secondary metabolism has been conducted. In this study, petioles of Chinese rhubarb (Rheum officinale) [healthy or infected with smut fungus (Thecaphora schwarzmaniana)] were characterized. Microscopic structure, global gene expression profiling, global metabolic profiling, and key enzyme activity and metabolite levels in infected plants were analyzed. Infection by smut fungi resulted in numerous holes inside the petiole tissue and led to visible tumors on the external surface of the petiole. Through metabolic changes, T. schwarzmaniana induced the production of specific sugars, lipids, and amino acids, and inhibited the metabolism of phenolics and flavonoids in R. officinale. The concentrations of key medicinal compounds (anthraquinones) were decreased because of smut fungus infection. In terms of gene expression, the presence of T. schwarzmaniana led to upregulation of the genes associated with nutrient (sugar, amino acid, etc.) transport and metabolism. The gene expression profiling showed a stimulated cell division activity (the basis of tumor formation). Although plant antioxidative response was enhanced, the plant defense response against pathogen was suppressed by T. schwarzmaniana, as indicated by the expression profiling of genes involved in biotic and abiotic stress-related hormone signaling and the synthesis of plant disease resistance proteins. This study demonstrated physiological and molecular changes in R. officinale under T. schwarzmaniana infection, reflecting the survival tactics employed by smut fungus for parasitizing rhubarb.


Subject(s)
Rheum , Transcriptome , Rheum/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Profiling , Metabolome
14.
Chem Commun (Camb) ; 59(85): 12775-12778, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37814891

ABSTRACT

A dual functional BODIPY fluorescent probe was developed for simultaneous detection of H2O2 and viscosity, by collecting fluorescence from 800-1100 nm and 550-750 nm, respectively. Bioimaging based on the probe shows that H2O2 accumulates and cytoplasmic viscosity increases during the palmitic acid (PA)-induced pyroptosis process.


Subject(s)
Fluorescent Dyes , Hydrogen Peroxide , Humans , Viscosity , Pyroptosis , HeLa Cells
15.
Mol Biotechnol ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37843755

ABSTRACT

This study aimed to investigate the effects of mild therapeutic hypothermia combined with stereotactic aspiration of spontaneous intracerebral hematoma on neurological function, inflammatory markers, cerebral hematoma, and cerebral edema in patients with severe cerebral hemorrhage. The clinical data of 86 patients with severe cerebral hemorrhage treated at our hospital between March 2020 and January 2022 were retrospectively analyzed. The patients were grouped according to their treatment plans: the control group consisted of 40 patients who underwent stereotactic aspiration of the spontaneous intracerebral hematoma, whereas the study group consisted of 46 patients who received adjuvant mild therapeutic hypothermia in addition to the aforementioned treatment. Clinical efficacy, neurological function (NIHSS score), daily living ability (BI score), cerebral hematoma, cerebral edema, cerebral hemodynamics (PI, RI, Vm, Vd), inflammatory markers (IL-6, IL-8, TNF-α, hs-CRP), oxidative stress indicators (SOD, MDA, 8-iso-PGF2α), serum-related factors (MMP-9, ICAM-1, ET-1, NO), and prognosis were compared between the groups. The total efficacy rate in the study group (95.65%) was significantly higher than that in the control group (77.50%) (P < 0.05). Post-treatment NIHSS scores, intracranial hematoma volume, perihematoma edema volume, cerebral edema volume, RI, serum IL-6, IL-8, TNF-α, hs-CRP, MDA, and 8-iso-PGF2α levels were significantly lower in both groups, with the study group showing even greater reductions. The BI score and PI, Vm, Vd, SOD, and NO levels were significantly higher in the study group (P < 0.05). At the 6-month follow-up, the prognosis of patients in the intervention group was significantly better than that of patients in the control group (P < 0.05). The combination of mild therapeutic hypothermia with stereotactic aspiration of a spontaneous intracerebral hematoma has demonstrated efficacy in the treatment of severe cerebral hemorrhage. This approach effectively reduces cerebral hematoma and edema, improves daily living ability, alleviates neurological deficits, regulates cerebral hemodynamics, suppresses inflammatory responses and oxidative stress, modulates serum-related factor levels, and enhances patient prognosis.

16.
New Phytol ; 240(5): 1848-1867, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37691138

ABSTRACT

Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.


Subject(s)
Drought Resistance , Populus , Plant Proteins/metabolism , Droughts , Water/metabolism , Signal Transduction , Gene Expression Regulation, Plant , Stress, Physiological/genetics
17.
Adv Nutr ; 14(6): 1416-1435, 2023 11.
Article in English | MEDLINE | ID: mdl-37619764

ABSTRACT

The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.


Subject(s)
NAD , Nicotinamide Mononucleotide , Animals , Humans , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/metabolism , NAD/metabolism , Oxidative Stress , Models, Animal
18.
Front Plant Sci ; 14: 1232880, 2023.
Article in English | MEDLINE | ID: mdl-37546258

ABSTRACT

Jasmonic acid (JA) is a phytohormone involved in plant defense, growth, and development, etc. However, the regulatory mechanisms underlying JA-mediated lignin deposition and secondary cell wall (SCW) formation remain poorly understood. In this study, we found that JA can inhibit lignin deposition and SCW thickening in poplar trees through exogenous MeJA treatment and observation of the phenotypes of a JA synthesis mutant, opdat1. Hence, we identified a JA signal inhibitor PtoJAZ5, belonging to the TIFY gene family, which is involved in the regulation of secondary vascular development of Populus tomentosa. RT-qPCR and GUS staining revealed that PtoJAZ5 was highly expressed in poplar stems, particularly in developing xylem. Overexpression of PtoJAZ5 inhibited SCW thickening and down-regulated the expression of SCW biosynthesis-related genes. Further biochemical analysis showed that PtoJAZ5 interacted with multiple SCW switches NAC/MYB transcription factors, including MYB3 and WND6A, through yeast two-hybrid and bimolecular fluorescent complementation experiments. Transcriptional activation assays demonstrated that MYB3-PtoJAZ5 and WND6A-PtoJAZ5 complexes regulated the expression of lignin synthetic genes. Our results suggest that PtoJAZ5 plays a negative role in JA-induced lignin deposition and SCW thickening in poplar and provide new insights into the molecular mechanisms underlying JA-mediated regulation of SCW formation.

19.
Clinics (Sao Paulo) ; 78: 100273, 2023.
Article in English | MEDLINE | ID: mdl-37591108

ABSTRACT

OBJECTIVES: Myocardial Infarction (MI) is the leading cause of chronic heart failure. Previous studies have suggested that Vav3, a receptor protein tyrosine kinase signal transducer, is associated with a variety of cellular signaling processes such as cell morphology regulation and cell transformation with oncogenic activity. However, the mechanism of Vav3-mediated MI development requires further investigation. METHOD: Here, The authors established an MI rat model by ligating the anterior descending branch of the left coronary artery, and an MI cell model by treating cardiomyocytes with H2O2. Microarray analysis was conducted to identify genes with differential expression in heart tissues relevant to MI occurrence and development. Vav3 was thus selected for further investigation. RESULTS: Vav3 downregulation was observed in MI heart tissue and H2O2-treated cardiomyocytes. Administration of Lentiviral Vav3 (LV-VAV3) in MI rats upregulated Vav3 expression in MI heart tissue. Restoration of Vav3 expression reduced infarct area and ameliorated cardiac function in MI rats. Cardiac inflammation, apoptosis, and upregulation of NFκB signal in heart tissue of MI animals were assessed using ELISA, TUNEL staining, real-time PCR, and WB. Vav3 overexpression reduced cardiac inflammation and apoptosis and inhibited NFκB expression and activation. Betulinic Acid (BA) was then used to re-activate NFκB in Vav3-overexpressed and H2O2-induced cardiomyocytes. The expression of P50 and P65, as well as nuclear P65, was significantly increased by BA exposure. CONCLUSIONS: Vav3 might serve as a target to reduce ischemia damage by suppressing the inflammation and apoptosis of cardiomyocytes.


Subject(s)
Hydrogen Peroxide , Myocardial Infarction , Animals , Rats , Apoptosis , Betulinic Acid , Cell Death , Hydrogen Peroxide/pharmacology , Inflammation , Myocardial Infarction/genetics , NF-kappa B
20.
Invest Ophthalmol Vis Sci ; 64(10): 30, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37486293

ABSTRACT

Purpose: To explore the role of Th2 signaling pathway in allergic conjunctivitis (AC). Methods: Serum Th2 cytokines IL-4 or IL-13 of patients with AC were detected using the Meso scale discovery assay to verify the correlation of Th2 immunity and AC pathogenesis. Wistar Han rats were intraperitoneally and subcutaneously injected with ovalbumin (OVA) to establish an experimental AC model and the Th2 signaling pathway was blocked by an investigational neutralizing antibody (CM310). Serum IgE and OVA-specific IgE were detected by ELISA. Conjunctivitis inflammation, infiltration of eosinophils, and mast cell degranulation were detected by histological examination. Immortalized human conjunctival epithelial cells, a conjunctival epithelial cell line, and peripheral blood mononuclear cells of patients with AC were used as the target cells to study the impact of IL-4 or IL-13 on AC progression. Finally, a STAT6 reporter gene system was constructed using immortalized human conjunctival epithelial cells to confirm whether the downstream signaling pathway activated by IL-4 or IL-13. Results: Serum IL-4 or IL-13 were increased in patients with AC versus healthy individuals. In an OVA-induced rat experimental AC model, blocking the Th2 signaling pathway with CM310, an investigational neutralizing antibody, alleviated the conjunctival symptoms, and decreased serum IgE, suppressed infiltration of eosinophils and mast cell degranulation. Further, an in vitro model showed CM310 suppressed the secretion of inflammatory cytokine from both immune cells and epithelial cells in both patients peripheral blood mononuclear cells and cell line. Conclusions: Blocking Th2 signaling pathway alleviates the clinical symptoms and inflammation in AC.


Subject(s)
Conjunctivitis, Allergic , Humans , Rats , Animals , Mice , Conjunctivitis, Allergic/metabolism , Interleukin-13/adverse effects , Interleukin-4 , Leukocytes, Mononuclear/metabolism , Rats, Wistar , Inflammation , Immunoglobulin E , Signal Transduction , Cytokines/metabolism , Ovalbumin/adverse effects , Th2 Cells , Mice, Inbred BALB C , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...