Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 196, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046207

ABSTRACT

BACKGROUND: Studying the genetic characteristics of tea plant (Camellia spp.) leaf traits is essential for improving yield and quality through breeding and selection. Guizhou Plateau, an important part of the original center of tea plants, has rich genetic resources. However, few studies have explored the associations between tea plant leaf traits and single nucleotide polymorphism (SNP) markers in Guizhou. RESULTS: In this study, we used the genotyping-by-sequencing (GBS) method to identify 100,829 SNP markers from 338 accessions of tea germplasm in Guizhou Plateau, a region with rich genetic resources. We assessed population structure based on high-quality SNPs, constructed phylogenetic relationships, and performed genome-wide association studies (GWASs). Four inferred pure groups (G-I, G-II, G-III, and G-IV) and one inferred admixture group (G-V), were identified by a population structure analysis, and verified by principal component analyses and phylogenetic analyses. Through GWAS, we identified six candidate genes associated with four leaf traits, including mature leaf size, texture, color and shape. Specifically, two candidate genes, located on chromosomes 1 and 9, were significantly associated with mature leaf size, while two genes, located on chromosomes 8 and 11, were significantly associated with mature leaf texture. Additionally, two candidate genes, located on chromosomes 1 and 2 were identified as being associated with mature leaf color and mature leaf shape, respectively. We verified the expression level of two candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and designed a derived cleaved amplified polymorphism (dCAPS) marker that co-segregated with mature leaf size, which could be used for marker-assisted selection (MAS) breeding in Camellia sinensis. CONCLUSIONS: In the present study, by using GWAS approaches with the 338 tea accessions population in Guizhou, we revealed a list of SNPs markers and candidate genes that were significantly associated with four leaf traits. This work provides theoretical and practical basis for the genetic breeding of related traits in tea plant leaves.


Subject(s)
Camellia sinensis , Genome-Wide Association Study , Chromosome Mapping/methods , Camellia sinensis/genetics , Genotype , Phylogeny , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide/genetics , Plant Leaves/genetics , Tea
2.
J Med Biochem ; 42(2): 258-264, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987412

ABSTRACT

Background: This study aims to establish reference intervals (RIs) for thyroid hormones in the elderly population and analyze their influence on the prevalence of subclinical hypothyroidism. Methods: Thyroid hormone records of subjects who underwent routine health checkup at our hospital between 2018 and 2020 were analyzed. Thyroid stimulating hormone (TSH), total triiodothyronine, total thyroxine, free triiodothyronine (FT3), and free thyroxine (FT4) levels were compared between young and elderly subjects. Thresholds of these thyroid hormones were established for elderly subjects. Results: A total of 22,207 subjects were included. Of them, 2,254 (10.15%) were aged ≥ 65 years. Elderly subjects had higher TSH, and lower FT3 and FT4 levels when compared with young subjects. In the elderly group, the RIs for TSH, FT3 and FT4 were 0.55-5.14 mIU/L, 3.68-5.47 pmol/L, and 12.00-19.87 pmol/L, respectively. The age and sex specific RIs for TSH were 0.56-5.07 mIU/L for men and 0.51-5.25 mIU/L for women. With whole-group RIs and age and sex-specific RIs for elderly people, the prevalence of subclinical hypothyroidism was 9.83% and 6.29% (p < 0.001), respectively. Conclusions: Elderly individuals had higher TSH levels than young individuals. Our study indicated that establishing specific RIs for elderly individuals is needed. This has implications for the diagnosis and management of subclinical hypothyroidism in the elderly population.

3.
BMC Plant Biol ; 22(1): 55, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086484

ABSTRACT

BACKGROUND: Tea plants originated in southwestern China. Guizhou Plateau is an original center of tea plants, and is rich in germplasm resources. However, the genetic diversity, population structure and distribution characteristics of cultivated-type tea plants in the region are unknown. In this study, we explored the genetic diversity and geographical distribution of cultivated-type tea accessions in Guizhou Plateau. RESULTS: We used 112,072 high-quality genotyping-by-sequencing to analyze the genetic diversity, principal components, phylogeny, population structure, and linkage disequilibrium, and develop a core collection of 253 cultivated-type tea plant accessions from Guizhou Plateau. The results showed Genetic diversity of the cultivated-type tea accessions of the Pearl River Basin was significantly higher than that of the cultivated-type tea accessions of the Yangtze River Basin. Three inferred pure groups (CG-1, CG-2 and CG-3) and one inferred admixture group (CG-4), were identified by a population structure analysis, and verified by principal component and phylogenetic analyses. The highest genetic distance and differentiation coefficients were determined for CG-2 vs CG-3. The lower genetic distance and differentiation coefficients were determined for CG-4 vs CG-2 and CG-4 vs CG-3, respectively. We developed a core set and a primary set. The primary and core sets contained 77.0 and 33.6% of all individuals in the initial set, respectively. The primary set may serve as the primary population in genome-wide association studies, while the core collection may serve as the core population in multiple treatment setting studies. CONCLUSIONS: The present study demonstrated the genetic diversity and geographical distribution characteristics of cultivated-type tea plants in Guizhou Plateau. Significant differences in genetic diversity and evolutionary direction were detected between the ancient landraces of the Pearl River Basin and the those of the Yangtze River Basin. Major rivers and ancient hubs were largely responsible for the genetic exchange between the Pearl River Basin and the Yangtze River Basin ancient landraces as well as the formation of the ancient hubs evolutionary group. Genetic diversity, population structure and core collection elucidated by this study will facilitate further genetic studies, germplasm protection, and breeding of tea plants.


Subject(s)
Camellia sinensis/genetics , Camellia sinensis/physiology , Genetic Variation , Agriculture , China , Demography , Gene Expression Regulation, Plant , Genotype , Humans
4.
PeerJ ; 8: e8572, 2020.
Article in English | MEDLINE | ID: mdl-32206447

ABSTRACT

An accurate depiction of the genetic relationship, the development of core collection, and genome-wide association analysis (GWAS) are key for the effective exploitation and utilization of genetic resources. Here, genotyping-by-sequencing (GBS) was used to characterize 415 tea accessions mostly collected from the Guizhou region in China. A total of 30,282 high-quality SNPs was used to estimate the genetic relationships, develop core collections, and perform GWAS. We suggest 198 and 148 accessions to represent the core set and mini-core set, which consist of 47% and 37% of the whole collection, respectively, and contain 93-95% of the total SNPs. Furthermore, the frequencies of all alleles and genotypes in the whole set were very well retained in the core set and mini-core set. The 415 accessions were clustered into 14 groups and the core and the mini-core collections contain accessions from each group, species, cultivation status and growth habit. By analyzing the significant SNP markers associated with multiple traits, nine SNPs were found to be significantly associated with four leaf size traits, namely MLL, MLW, MLA and MLSI (P < 1.655E-06). This study characterized the genetic distance and relationship of tea collections, suggested the core collections, and established an efficient GWAS analysis of GBS result.

5.
BMC Plant Biol ; 19(1): 328, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31337341

ABSTRACT

BACKGROUND: To efficiently protect and exploit germplasm resources for marker development and breeding purposes, we must accurately depict the features of the tea populations. This study focuses on the Camellia sinensis (C. sinensis) population and aims to (i) identify single nucleotide polymorphisms (SNPs) on the genome level, (ii) investigate the genetic diversity and population structure, and (iii) characterize the linkage disequilibrium (LD) pattern to facilitate next genome-wide association mapping and marker-assisted selection. RESULTS: We collected 415 tea accessions from the Origin Center and analyzed the genetic diversity, population structure and LD pattern using the genotyping-by-sequencing (GBS) approach. A total of 79,016 high-quality SNPs were identified; the polymorphism information content (PIC) and genetic diversity (GD) based on these SNPs showed a higher level of genetic diversity in cultivated type than in wild type. The 415 accessions were clustered into three groups by STRUCTURE software and confirmed using principal component analyses (PCA)-wild type, cultivated type, and admixed wild type. However, unweighted pair group method with arithmetic mean (UPGMA) trees indicated the accessions should be grouped into more clusters. Further analyses identified four groups, the Pure Wild Type, Admixed Wild Type, ancient landraces and modern landraces using STRUCTURE, and the results were confirmed by PCA and UPGMA tree method. A higher level of genetic diversity was detected in ancient landraces and Admixed Wild Type than that in the Pure Wild Type and modern landraces. The highest differentiation was between the Pure Wild Type and modern landraces. A relatively fast LD decay with a short range (kb) was observed, and the LD decays of four inferred populations were different. CONCLUSIONS: This study is, to our knowledge, the first population genetic analysis of tea germplasm from the Origin Center, Guizhou Plateau, using GBS. The LD pattern, population structure and genetic differentiation of the tea population revealed by our study will benefit further genetic studies, germplasm protection, and breeding.


Subject(s)
Camellia sinensis/genetics , China , Genetic Variation/genetics , Genome-Wide Association Study , Genotyping Techniques , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...