Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(11): 3202-3205, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824363

ABSTRACT

The weak free carrier dispersion effect significantly hinders the adoption of silicon modulators in low-power applications. While various structures have been demonstrated to reduce the half-wave voltage, it is always challenging to balance the trade-off between modulation efficiency and the bandwidth. Here, we demonstrated a slow-wave Michelson structure with 1-mm-long active length. The modulator was designed at the emerging 2-µm wave band which has a stronger free carrier effect. A record high modulation efficiency of 0.29 V·cm was achieved under a carrier depletion mode. The T-rail traveling wave electrodes were designed to improve the modulation bandwidth to 13.3 GHz. Up to 20 Gb/s intensity modulation was achieved at a wavelength of 1976 nm.

2.
Sci Adv ; 10(21): eadn9017, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787955

ABSTRACT

Dynamic control of circular dichroism in photonic structures is critically important for compact spectrometers, stereoscopic displays, and information processing exploiting multiple degrees of freedom. Metasurfaces can help miniaturize chiral devices but only produce static and limited chiral responses. While external stimuli can tune resonances, their modulations are often weak, and reversing continuously the sign of circular dichroism is extremely challenging. Here, we demonstrate the dynamically tunable chiral response of resonant metasurfaces supporting chiral bound states in the continuum combining them with phase-change materials. Phase transition between amorphous and crystalline phases allows for control of chiral response and varies chirality rapidly from -0.947 to +0.958 backward and forward via the chirality continuum. Our demonstrations underpin the rapid development of chiral photonics and its applications.

3.
Nat Nanotechnol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561429

ABSTRACT

Control of the angular momentum of light at the nanoscale is critical for many applications of subwavelength photonics, such as high-capacity optical communications devices, super-resolution imaging and optical trapping. However, conventional approaches to generate optical vortices suffer from either low efficiency or relatively large device footprints. Here we show a new strategy for vortex generation at the nanoscale that surpasses single-pixel phase control. We reveal that interaction between neighbouring nanopillars of a meta-quadrumer can tailor both the intensity and phase of the transmitted light. Consequently, a subwavelength nanopillar quadrumer is sufficient to cover a 2lπ phase change, thus efficiently converting incident light into high-purity optical vortices with different topological charges l. Benefiting from the nanoscale footprint of the meta-quadrumers, we demonstrate high-density vortex beam arrays and high-dimensional information encryption, bringing a new degree of freedom to many designs of meta-devices.

4.
Opt Lett ; 49(8): 2157-2160, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621100

ABSTRACT

Significantly increased interests have been witnessed for the 2 µm waveband which is considered to be a promising alternative window for fiber and free-space optical communications. However, the less mature device technology at this wavelength range is one of the primary obstacles toward practical applications. In this work, we demonstrate an efficient and high-speed silicon modulator based on carrier depletion in a coupling tunable resonator. A benchmark high modulation efficiency of 0.75 V·cm is achieved. The 3-dB electro-optic bandwidth is measured to be 26 GHz allowing for up to 34 Gbit/s on-off keying modulation with a low energy consumption of ∼0.24 pJ/bit. It provides a solution for the silicon modulator with high-speed and low power consumption in the 2-µm waveband.

5.
Nat Commun ; 15(1): 2944, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580656

ABSTRACT

Due to its unique intensity distribution, self-acceleration, and beam self-healing properties, Airy beam holds great potential for optical wireless communications in challenging channels, such as underwater environments. As a vital part of 6G wireless network, the Internet of Underwater Things requires high-stability, low-latency, and high-capacity underwater wireless optical communication (UWOC). Currently, the primary challenge of UWOC lies in the prevalent time-varying and complex channel characteristics. Conventional blue Gaussian beam-based systems face difficulties in underwater randomly perturbed links. In this work, we report a full-color circular auto-focusing Airy beams metasurface transmitter for reliable, large-capacity and long-distance UWOC links. The metasurface is designed to exhibits high polarization conversion efficiency over a wide band (440-640 nm), enabling an increased data transmission rate of 91% and reliable 4 K video transmission in wavelength division multiplexing (WDM) based UWOC data link. The successful application of this metasurface in challenging UWOC links establishes a foundation for underwater interconnection scenarios in 6G communication.

6.
Nanoscale ; 16(18): 8807-8819, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38616650

ABSTRACT

The orthogonality among the OAM modes provides a new degree of freedom for optical multiplexing communications. So far, traditional Dammann gratings and spatial light modulators (SLMs) have been widely used to generate OAM beams by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. With the rapid development of the electromagnetic theory and advanced nanofabrication methods, artificial nanostructures, especially optical metasurfaces, have been introduced which greatly shrink the size of OAM multiplexing devices while increasing the level of integration. This review focuses on the study of encryption, multiplexing and demultiplexing of OAM beams based on nanostructure platforms. After introducing the focusing characteristics of OAM beams, the interaction mechanism between OAM beams and nanostructures is discussed. The physical phenomena of helical dichroism response and spatial separation of OAM beams achieved through nanostructures, setting the stage for OAM encryption and multiplexing, are reviewed. Afterward, the further advancements and potential applications of nanophotonics-based OAM multiplexing are deliberated. Finally, the challenges of conventional design methods and dynamic tunable techniques for nanostructure-based OAM multiplexing technology are addressed.

7.
Opt Lett ; 49(4): 1085-1088, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359259

ABSTRACT

Recently, the 2-µm wave band has gained increased interest due to its potential application for the next-generation optical communication. As a proven integration platform, silicon photonics also benefit from the lower nonlinear absorption and larger electro-optic coefficient. However, this spectral range is far beyond the photodetection range of germanium, which places an ultimate limit for on-chip applications. In this work, we demonstrate a waveguide-coupled photodetector enabled by a tensile strain-induced absorption in germanium. Responsivity is greatly enhanced by the proposed interleaved junction structure. The device is designed on a 220-nm silicon-on-insulator and is fabricated via a standard silicon photonic foundry process. By utilizing different interleaved PN junction spacing configurations, we were able to measure a responsivity of 0.107 A/W at 1950 nm with a low bias voltage of -6.4 V for the 500-µm-long device. Additionally, the 3-dB bandwidth of the device was measured to be up to 7.1 GHz. Furthermore, we successfully achieved data transmission at a rate of 20 Gb/s using non-return-to-zero on-off keying modulation.

8.
Nat Mater ; 23(1): 71-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37919349

ABSTRACT

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 µm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 10-3 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

9.
Transl Psychiatry ; 13(1): 383, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071192

ABSTRACT

Schizophrenia (SZ) is a complex psychiatric neurodevelopmental disorder with uncertain etiology and pathogenesis. Increasing evidence has recognized the key role of the gut microbiota in SZ. However, few studies have investigated the potential link between oral microbiota and SZ. We studied the tongue coating microbiota and inflammatory profiles of 118 elderly SZ patients and 97 age-matched healthy controls using Illumina MiSeq sequencing and multiplex immunoassays, respectively. Reduced α-diversity, along with a significant difference in ß-diversity, were observed in patients with SZ. We have identified SZ-associated oral dysbiosis, characterized by increased Streptococcus and Fusobacterium, as well as decreased Prevotella and Veillonella. These differential genera could potentially serve as biomarkers for SZ, either alone or in combination. Additionally, an elevated Streptococcus/Prevotella ratio could indicate oral dysbiosis. These differential genera formed two distinct clusters: Streptococcus-dominated and Prevotella-dominated, which exhibited different correlations with the altered immunological profiles. Furthermore, we also observed disruptions in the inferred microbiota functions in SZ-associated microbiota, particularly in lipid and amino acid metabolism. Our study provides novel insights into the characteristics of tongue coating microbiota and its associations with immunological disturbances in elderly SZ patients, which offer new targets for the diagnosis and treatment of SZ in the elderly.


Subject(s)
Microbiota , Schizophrenia , Humans , Aged , Cross-Sectional Studies , Dysbiosis , China
10.
Nat Commun ; 14(1): 6410, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828022

ABSTRACT

We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LGp,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing.

11.
Opt Lett ; 48(16): 4368-4371, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582034

ABSTRACT

Growing research interests have been directed to the emerging optical communication band at 2-µm wavelengths. The silicon photonic components are highly desired to operate over a broad bandwidth covering both C-band and the emerging 2-µm wave band. However, the dispersions of the silicon waveguides eventually limit the optical bandwidth of the silicon photonic devices. Here, we introduce a topology-optimized Y-junction with a shallow-etched trench and its utility to reverse the detrimental dispersion effect. The shallow trench enables the Y-junction to have an adaptive splitting capability over a broad spectral range. The 0.2-dB bandwidth of the power splitter exceeds 800 nm from 1400 nm to 2200 nm. The device has a compact footprint of 3 µm × 1.64 µm. The device is characterized at the C-band and 2-µm band with a measured excess loss below 0.4 dB for a proof-of-concept demonstration.

12.
Environ Sci Technol ; 57(29): 10686-10695, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37437160

ABSTRACT

Significant knowledge gaps exist regarding the emission of elemental mercury (Hg0) from the tropical forest floor, which limit our understanding of the Hg mass budget in forest ecosystems. In this study, biogeochemical processes of Hg0 deposition to and evasion from soil in a Chinese tropical rainforest were investigated using Hg stable isotopic techniques. Our results showed a mean air-soil flux as deposition of -4.5 ± 2.1 ng m-2 h-1 in the dry season and as emission of +7.4 ± 1.2 ng m-2 h-1 in the rainy season. Hg re-emission, i.e., soil legacy Hg evasion, induces negative transitions of Δ199Hg and δ202Hg in the evaded Hg0 vapor, while direct atmospheric Hg0 deposition does not exhibit isotopic fractionation. Using an isotopic mass balance model, direct atmospheric Hg0 deposition to soil was estimated to be 48.6 ± 13.0 µg m-2 year-1. Soil Hg0 re-emission was estimated to be 69.5 ± 10.6 µg m-2 year-1, of which 63.0 ± 9.3 µg m-2 year-1 is from surface soil evasion and 6.5 ± 5.0 µg m-2 year-1 from soil pore gas diffusion. Combined with litterfall Hg deposition (∼34 µg m-2 year-1), we estimated a ∼12.6 µg m-2 year-1 net Hg0 sink in the tropical forest. The fast nutrient cycles in the tropical rainforests lead to a strong Hg0 re-emission and therefore a relatively weaker atmospheric Hg0 sink.


Subject(s)
Mercury , Mercury/analysis , Ecosystem , Environmental Monitoring , Forests , Soil
13.
Light Sci Appl ; 12(1): 184, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37491410

ABSTRACT

Acquiring real-time spectral information in point-of-care diagnosis, internet-of-thing, and other lab-on-chip applications require spectrometers with hetero-integration capability and miniaturized feature. Compared to conventional semiconductors integrated by heteroepitaxy, solution-processable semiconductors provide a much-flexible integration platform due to their solution-processability, and, therefore, more suitable for the multi-material integrated system. However, solution-processable semiconductors are usually incompatible with the micro-fabrication processes. This work proposes a facile and universal platform to fabricate integrated spectrometers with semiconductor substitutability by unprecedently involving the conjugated mode of the bound states in the continuum (conjugated-BIC) photonics. Specifically, exploiting the conjugated-BIC photonics, which remains unexplored in conventional lasing studies, renders the broadband photodiodes with ultra-narrowband detection ability, detection wavelength tunability, and on-chip integration ability while ensuring the device performance. Spectrometers based on these ultra-narrowband photodiode arrays exhibit high spectral resolution and wide/tunable spectral bandwidth. The fabrication processes are compatible with solution-processable semiconductors photodiodes like perovskites and quantum dots, which can be potentially extended to conventional semiconductors. Signals from the spectrometers directly constitute the incident spectra without being computation-intensive, latency-sensitive, and error-intolerant. As an example, the integrated spectrometers based on perovskite photodiodes are capable of realizing narrowband/broadband light reconstruction and in-situ hyperspectral imaging.

14.
Nano Lett ; 23(8): 3459-3466, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039431

ABSTRACT

In-plane diffractive optical networks based on meta-surfaces are promising for on-chip application. The design constraints of regular antenna unit place ultimate limits on the functionalities of the meta-systems. This fundamental limitation has been reflected by the large footprints of cascaded meta-surfaces. Here, we propose a digital meta-lens with a large degree of design freedom, enabling significantly improved beam focusing, collimation, and deflection capabilities. A highly dispersive and compact diffractive optical system is constructed for spectrometer via five layers of meta-lenses in a folded configuration. The device only occupies a 100 µm × 100 µm chip area on a silicon photonic platform. Sparse and continuous spectra reconstruction is achieved over a 35 nm bandwidth. Fine spectral lines separated by 0.14 nm are resolved. In addition to such a compact and high-resolution on-chip spectrometer, it is also expected to be promising for imaging, optical computing, and other applications due to the great versatility of the digital lens design.

15.
Nano Lett ; 23(8): 3418-3425, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37042745

ABSTRACT

Lead halide perovskites have been promising platforms for micro- and nanolasers. However, the fragile nature of perovskites poses an extreme challenge to engineering a cavity boundary and achieving high-quality (Q) modes, severely hindering their practical applications. Here, we combine an etchless bound state in the continuum (BIC) and a chemically synthesized single-crystalline CsPbBr3 microplate to demonstrate on-chip integrated perovskite microlasers with ultrahigh Q factors. By pattering polymer microdisks on CsPbBr3 microplates, we show that record high-Q BIC modes can be formed by destructive interference between different in-plane radiation from whispering gallery modes. Consequently, a record high Q-factor of 1.04 × 105 was achieved in our experiment. The high repeatability and high controllability of such ultrahigh Q BIC microlasers have also been experimentally confirmed. This research provides a new paradigm for perovskite nanophotonics.

16.
Sci Adv ; 9(15): eadf3470, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37043581

ABSTRACT

The on-chip integrated visible microlaser is a core unit of high-speed visible-light communication with huge bandwidth resources, which needs robustness against fabrication errors, compressible linewidth, reducible threshold, and in-plane emission. However, until now, it has been a great challenge to meet these requirements simultaneously. Here, we report a scalable strategy to realize a robust on-chip integrated visible microlaser with further improved lasing performances enabled by the increased orders (n) of exceptional surfaces, and experimentally verify the strategy by demonstrating the performances of a second-order exceptional surface-tailored microlaser. We further prove the potential application of the strategy by discussing an exceptional surface-tailored topological microlaser with unique performances. This work lays a foundation for further development of on-chip integrated high-speed visible-light communication and processing systems, provides a platform for the fundamental study of non-Hermitian photonics, and proposes a feasible method of joint research for non-Hermitian photonics with nonlinear optics and topological photonics.

17.
Adv Mater ; 35(28): e2300344, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37031351

ABSTRACT

Efficient control of integrated light sources is crucial to advancing practical applications of nanophotonics. Despite the success of microlasers, their sophisticated nanostructures are not applicable in nanolasers. The situation for bottom-up-synthesized nanolasers becomes more challenging due to the constraints of fixed cavity shapes and fragile material stability. Here, the physics of exceptional points (EPs) is employed, and a strategy is demonstrated to precisely tune the lasing actions in lead halide perovskite nanorods. By placing a nanoparticle to the boundary of a square nanocavity, it is shown that EPs regularly and controllably emerge as a function of the nanoparticle position. Consequently, both the internal lasing actions and their far-field radiation can be completely reversed with a tiny displacement of <100 nm. The new strategy for controlling lasing actions in nanocavities is confirmed with numerical simulations and lasing experiments. This research can also bring new avenues for ultrasensitive position sensing.


Subject(s)
Nanoparticles , Nanostructures , Nanotubes , Calcium Compounds
18.
Opt Express ; 31(3): 4569-4579, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36785421

ABSTRACT

The hybrid microcavity composed of different materials shows unique thermal-optical properties such as resonance frequency shift and small thermal noise fluctuations with the temperature variation. Here, we have fabricated the hybrid Si3N4 - TiO2 microring, which decreases the effective thermo-optical coefficients (TOC) from 23.2pm/K to 11.05pm/K due to the opposite TOC of these two materials. In this hybrid microring, we experimentally study the thermal dynamic with different input powers and scanning speeds. The distorted transmission and thermal oscillation are observed, which results from the non-uniform scanning speed and the different thermal relaxation times of the Si3N4 and the TiO2. We calibrate the distorted transmission spectrum for the resonance measurement at the reverse scanning direction and explain the thermal oscillation with a thermal-optical coupled model. Finally, we analyse the thermal oscillation condition and give the diagram about the oscillation region, which has significant guidance for the occurrence and avoidance of the thermal oscillation in practical applications.

19.
Sci Total Environ ; 857(Pt 1): 159390, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36243072

ABSTRACT

Annual gross primary productivity (AGPP) is the basis for grain production and terrestrial carbon sequestration. Mapping regional AGPP from site measurements provides methodological support for analysing AGPP spatiotemporal variations thereby ensures regional food security and mitigates climate change. Based on 641 site-year eddy covariance measuring AGPP from China, we built an AGPP mapping scheme based on its formation and selected the optimal mapping way, which was conducted through analysing the predicting performances of divergent mapping tools, variable combinations, and mapping approaches in predicting observed AGPP variations. The reasonability of the selected optimal scheme was confirmed by assessing the consistency between its generating AGPP and previous products in spatiotemporal variations and total amount. Random forest regression tree explained 85 % of observed AGPP variations, outperforming other machine learning algorithms and classical statistical methods. Variable combinations containing climate, soil, and biological factors showed superior performance to other variable combinations. Mapping AGPP through predicting AGPP per leaf area (PAGPP) explained 86 % of AGPP variations, which was superior to other approaches. The optimal scheme was thus using a random forest regression tree, combining climate, soil, and biological variables, and predicting PAGPP. The optimal scheme generating AGPP of Chinese terrestrial ecosystems decreased from southeast to northwest, which was highly consistent with previous products. The interannual trend and interannual variation of our generating AGPP showed a decreasing trend from east to west and from southeast to northwest, respectively, which was consistent with data-oriented products. The mean total amount of generated AGPP was 7.03 ± 0.45 PgC yr-1 falling into the range of previous works. Considering the consistency between the generated AGPP and previous products, our optimal mapping way was suitable for mapping AGPP from site measurements. Our results provided a methodological support for mapping regional AGPP and other fluxes.


Subject(s)
Climate Change , Ecosystem , Carbon Sequestration , Soil , Machine Learning , Carbon , Carbon Dioxide/analysis
20.
Opt Express ; 30(15): 26266-26274, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236821

ABSTRACT

Optical power splitters are fundamental blocks for photonic integrated circuits. Conventional 3-dB power splitters are either constrained to single-mode regime or to the limited optical bandwidth. In this paper, an alternative design approach is proposed via combined method of topology optimizations on both analog and digital meta-structure. Based on this approach, a dual-mode power splitter is designed on silicon-on-insulator with an ultra-broad bandwidth from 1588 nm - 2033nm and an ultra-compact footprint of only 5.4 µm × 2.88 µm. The minimum feature size is 120 nm which can be compatible with silicon photonic foundry process. The simulated excess loss and crosstalk over this wavelength range for the two lowest TE modes are lower than 0.83 dB and -22 dB, respectively. To the best of our knowledge, this is a record large optical bandwidth for an integrated dual-mode 3-dB power splitter on silicon.

SELECTION OF CITATIONS
SEARCH DETAIL
...