Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Waste Manag ; 186: 130-140, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878477

ABSTRACT

The traditional pyrometallurgical recycling of nano-sized platinum group metals (PGMs) from spent automotive catalysts (SACs) is an energy-intensive process that requires the addition of large quantities of copper capture and slag-forming reagents. Similarly, pyro-recycling of valuable metals from waste printed circuit boards (WPCBs) is also an energy- and reagent-intensive process that and carries a risk of pollution emissions. Based on the complementarity of composition and similarity of recycling process, synergistic pyro-recycling of SACs and WPCBs allow copper in WPCBs to capture PGMs in SACs and oxides from two waste form slag jointly, which offers benefits of enhanced metal recovery, reduced reagent and energy consumption, and suppressed pollutant emissions. However, the mechanisms of PGMs capture and pollutant transformation in co-smelting remain unknown. Here, we investigated the sub-processes mechanisms of slag formation, brominates fixation, multi-metal distribution and kinetic settlement. Oxides in both wastes support SiO2-Al2O3-CaO slag formation with low melting point and viscosity, where CaO suppresses the emission of brominated pollutants. Copper (50-100 µm) from WPCBs facilitates nano-sized PGMs in SACs recovery through capture and settlement. The results of demonstration experiments indicated a recovery rate of 94.6 %, 96.8 %, 97.2 %, and 98.1 % for Cu, Pt, Pd, and Rh, respectively, with a debromination efficiency exceeding 98 %. The theoretical analysis provides support for the establishment of a synergistic pyro-recycling process for SACs and WPCBs and provides insights into the potential for a greener and more efficient co-recycling of multi urban mines.

2.
Nat Rev Chem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862738

ABSTRACT

Electronic waste (e-waste) recycling is becoming a global concern owing to its immense quantity, hazardous character and the potential loss of valuable metals. The many processes involved in e-waste recycling stem from a mixture of physicochemical reactions, and understanding the principles of these reactions can lead to more efficient recycling methods. In this Review, we discuss the principles behind photochemistry, thermochemistry, mechanochemistry, electrochemistry and sonochemistry for metal recovery, polymer decomposition and pollutant elimination from e-waste. We also discuss how these processes induce or improve reaction rates, selectivity and controllability of e-waste recycling based on thermodynamics and kinetics, free radicals, chemical bond energy, electrical potential regulation and more. Lastly, key factors, limitations and suggestions for improvements of these physicochemical reactions for e-waste recycling are highlighted, wherein we also indicate possible research directions for the future.

3.
Proc Natl Acad Sci U S A ; 120(14): e2213130120, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36972452

ABSTRACT

The value of considerable residual energy in waste Li-ion batteries (WLIBs) is always neglected. At present, "this energy" is always wasted during the discharge process of WLIBs. However, if this energy could be reused, it would not only save a lot of energy but also avoid the discharge step of recycling of WLIBs. Unfortunately, the instability of WLIBs potential is a challenge to efficient utilization of this residual energy. Here, we propose a method that could regulate the cathode potential and current of the battery by simply adjusting the solution pH to utilize 35.08%, 88.4%, and 84.7% of the residual energy for removing heavy metal ions from wastewater, removing Cr (VI) from wastewater, and recovering copper from the solution, respectively. By taking advantage of the high internal resistance R of WLIBs and the sudden change of battery current I caused by iron passivation on the positive electrode of the battery, this method could induce the response of overvoltage η (η = IR) inside the battery at different pH levels to regulate the cathode potential µ of the battery to the three intervals. The potential ranges of the battery cathode corresponding to pH < 3.4, pH ≈ 3.4, and pH > 4 were µ > -0.47V, -0.47V < µ < -0.82V, and µ < -0.82V, respectively. This study provides a promising way and theoretical basis for the development of technologies for reusing residual energy in WLIBs.

4.
Waste Manag ; 158: 146-152, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36709680

ABSTRACT

Multi metal recycling from waste printed circuit boards (WPCBs) is attractive for resource conservation and sustainability. While smelting is commonly adopted to produce polymetallic concentrates from WPCBs, current processes cost oxidation smelting and fire refining followed by electrorefining to deport co-existing base metals and recover copper, which can cause substantial metal losses, long steps, and lack of effective methods for subsequent base metal recycling. Here, direct electrorefining of polymetallic concentrates (Cu-Ni-Fe-Pb-sn-Au-Ag) combined with electrodeposition was investigated to realize multi metal separation and purification. It was found that direct electrorefining of concentrates in H2SO4/CuSO4 electrolyte at 0.4 V realized >98% base metal dissolution and copper production (∼99% purity), serving as a combined metal leaching and copper electrowinning procedure. PbSO4-SnO2-Cu5FeS4 precipitate was formed in anode slime, with Ag-Au enriched by 8.5-61 times. Analysis on subsequent selective metal electrodeposition revealed the blocking effect of Zn2+ and overlapped potential region of Fe2+-Ni2+, emphasizing the importance of Zn and Fe pre-separation during smelting and chemical precipitation. Electrodeposition experiments demonstrated high selectivity for Cu and Ni at 0.05 and -0.7 V, where Ni2+ shows complex electroreduction behaviors. The proposed process can serve as an alternative feasible route for multi metal recycling from WPCBs.


Subject(s)
Copper , Electronic Waste , Electroplating , Electronic Waste/analysis , Metals , Recycling/methods
5.
Org Lett ; 24(35): 6374-6379, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36018352

ABSTRACT

We herein report the first example of an iminyl-radical-mediated formal 1,3-HAT/radical coupling cascade of vinyl azides leading to the synthesis of tetrasubstituted gem-disulfonyl enamines. It is possible to employ a variety of vinyl azides and sulfinate salt coupling elements without sacrificing effectiveness and scalability. The combination of experimental studies and DFT calculations showed that this reaction proceeds via a radical addition/formal 1,3-HAT/radical coupling mechanism.

6.
J Hazard Mater ; 420: 126568, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34252663

ABSTRACT

Precious metal (PM) retrievement from e-waste is of great significance for reducing virgin mining activity and promoting rare resource sustainability. However, current PM recycling methods rely mainly on caustic aqua regia or unstable sulfur-based ligand, which has caused severe environmental damage and process inefficiency. Here, we propose an environmentally friendly halide-regulated strategy, utilizing milder and renewable oxidant-cupric/ferric ion for facile PM dissolution. This is realized by the synergistic effect of enhanced oxidizing ability of Cu(II) and reduced oxidation potential of PM with halide addition. Electrochemical tests and leaching experiment results show that Cu(II)/Cu(I) redox potential experiences great change with bromide, increasing from 0.4 to 0.75 V. Fast corrosion feature was observed for Au in Cu(II)/Fe(III)-Br- and Pd in Cu(II)/Fe(III)-Cl-, and it can be accelerated by increasing oxidant and halide concentration. Our proposed strategy outperforms traditional methods with stable and fast dissolution, where 2.5 mol/L Br- is appropriate for Au dissolution. Moreover, selective dissolution of base metal, Pd/Ag, and Au can be achieved via ligand alteration and be further combined with electrodeposition technique for multi metal recovery and oxidant regeneration. This halide-regulated strategy can lead PM recycling from pollutive status towards environmentally friendly road.


Subject(s)
Electronic Waste , Electronic Waste/analysis , Ferric Compounds , Gold , Oxidation-Reduction , Recycling
7.
Environ Sci Technol ; 55(15): 10724-10733, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34269567

ABSTRACT

While CIGS solar cell has been experiencing an expanded photovoltaic market and increasing research interest in cell design, its treatment after obsoletion remains an upcoming issue. The heavy metals involved, such as Cd, can threat the environment, while strategic resources, such as rare metals In and Ga, offer a great recycling oppotunity. However, due to its multimetal feature, traditional recycling methodology shows poor separation-extraction efficiency and additional environmental burdens with intense reagent consumption and waste generation. Here, we report a sequential electrodeposition method for pure metal recycling from this Cu-In-Cd-Ga quaternary system in a more environmentally friendly and efficient manner. Stability constant-corrected redox potential supplemented with metal electroreduction tests predicts well the potential window for sequential electrodeposition. Cu and In electrodeposition shows 100% separation with high Coulombic efficiency (>80%), whereas Ga electrodeposition presents slower kinetics and performs better at a pH of 2.5. Environmental impact assessment indicates that the proposed recycling route allows remarkable reduction of global warming and toxicity impacts compared with metal production from virgin mining and reference processes. We further unveiled the applicability of the electrodeposition technique in the context of anthropogenic mineral recycling, emphasizing resource sustainability and cleaner production.


Subject(s)
Electronic Waste , Metals, Heavy , Cadmium , Electronic Waste/analysis , Electroplating , Environment , Metals, Heavy/analysis , Recycling
8.
J Hazard Mater ; 415: 125599, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33765563

ABSTRACT

With a huge amount of waste liquid crystal displays (LCDs) generated annually, their proper recycling raises continuous concern to realize pollution control (heavy metal and liquid crystal) and resource recovery (indium). However, due to their multi-metal feature, traditional hydrometallurgy lacks of sufficient selectivity, which makes the recycling route lengthy, costly, and generate more waste. Electrodeposition acts as a promising technique for selective metal extraction from multi-metal system due to its high selectivity and electron as clean reagent. To fully develop its application in metal recovery, stepwise Cu/MoO2 and In electrodeposition from In-Cu-Mo-Fe waste LCD leachate is explored in depth. Electrochemical behavior analysis shows Cu and MoO2 can be first electrodeposited for their higher electroreduction potential. Cl- plays a key role in accelerating indium electroreduction kinetics, which largely shortens the extraction time without the sacrifice of current efficiency. This accelerating effect is attributed to the increased concentration of electroactive species or collision frequency. Under optimized condition, 99.41% of indium (> 99% purity) can be electrodeposited within 13 h with high current efficiency. This study provides a cleaner approach for waste LCDs recycling and gives implications for the potential application of electrochemical technique in e-waste recycling.

9.
Environ Sci Technol ; 55(6): 4027-4036, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33663209

ABSTRACT

Every year, billions of tons of lignite are burnt to generate electricity, meanwhile generating large amounts of coal fly ash (CFA) that is regarded as an industrial waste. During lignite combustion, arsenic and scarce metals are simultaneously volatilized in the form of oxide into CFA. This study proposed an effective vacuum distillation method to remove As and recover Ge and W from CFA. The feasibility of separating As and recycling Ge and W from CFA was verified by the theoretical analysis. The experimental result indicated that the removal ratio of As was 96 ± 1% and the contents of Ge and W reached 0.75 ± 0.023 and 0.24 ± 0.016 wt % in the residue, which were enriched 17.2 and 1.2 times, respectively, at a temperature of 550 °C, with 50 wt % sulfurizing agent added under pressure of 1 Pa and 240 min of heating. For the condensed product, chemical species As2S3 and As4S4 were detected by X-ray photoelectron spectroscopy analysis. For Ge and W in the residue, GeOx (x < 2), GeS, WOx (x < 3), and WS2 were the main chemical species. The potential mechanism involved in the release of arsenic from CFA, vacuum sulfurization, evaporation, and condensation was proposed. The kinetic analysis indicated that the apparent activation energy (Eα) was 31.24 kJ mol-1. Those results encourage further exploration of vacuum separation technology to environmentally friendly recycle CFA.


Subject(s)
Arsenic , Germanium , Coal/analysis , Coal Ash/analysis , Distillation , Indicators and Reagents , Kinetics , Tungsten , Vacuum
10.
Waste Manag ; 124: 94-101, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33611158

ABSTRACT

How to realize the high value-added utilization of scrap copper from e-waste is a meaningful topic. In the study, an Ohno Continuous Casting (OCC) process is an existing method you applied to purify the copper. Based onthe model of diffusion-controlled grain growth kinetics, the redistribution of impurity of tin in the scrap copper were studied under the different continuous casting speed and mold temperature. On the centerline, macrosegregation in the axial direction of the tin was more obvious with the decrease of continuous casting speed. The small continuous casting rate was beneficial to the segregation and enrichment of tin. The axial segregation gradually decreased with the increase of the mold temperature. The flattening of the liquid-solid interface resulted in a weakening of the solute enrichment at the root of the interface with the increase of temperature. Morphology, electron backscattered diffraction (EBSD) analysis showed the structure of single crystal copper. The range of resistance of single crystal copper was from 5 × 10-6 to 3 × 10-5 Ω m. Obviously, the resistance of the single crystal copper was significantly smaller than that of ordinary copper wire (9.0 × 10-3 Ω m). This study provided a key theoretical and practical basis for the high value-added reuse of copper in e-waste.


Subject(s)
Copper , Electronic Waste , Electronic Waste/analysis , Recycling , Solutions , Temperature
11.
J Hazard Mater ; 408: 124772, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33388630

ABSTRACT

Electronic waste, as hazardous waste, contains a large amount of metals, which is of great recovery value. However, they are difficult to separate due to wide variety and complex distribution. Most of current recycling methods are environmentally-unfriendly or complicated. In this study, a simple, efficient and green approach for metals separation from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste was proposed combining mild leaching and stepwise potential-controlled electrodeposition. The leaching efficiencies of Ni, Ag, Pd, Cu and Bi were 99.16%, 99.09%, 94.91%, 99.61% and 23.76% with 1 mol/L HNO3 at 80 °C. The leaching process was analyzed. It showed that the existence of Ag-Pd continuous solid solution in the alloy lowered the oxidation potential of Pd, which facilitated its leaching. Sn precipitated as SnO2. Then Ag-Pd alloy and Cu-Bi alloy were separately extracted from the leaching solution by stepwise electrodeposition. 97.72% of Ag and 98.05% of Pd were recycled after 5 h with potential of 0.35 V. The recovery efficiencies of Cu and Bi were 97.87% and 97.33% after 7 h with potential of 0.05 V. The EDS results showed high purity property of Ag-Pd and Cu-Bi alloy. This process can achieve cleaner and efficient extraction of metals from multi-metal system in e-waste.

12.
J Hazard Mater ; 407: 124799, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33348202

ABSTRACT

Recycling activity for waste electrical and electronic equipment is always accompanied with leaching solution containing copper. Its selective extraction is of environmental and economic significance, and is beneficial for subsequent resource purification procedure. Compared with techniques such as chemical precipitation and solvent extraction, potentiostatic electrodeposition is outstanding with the advantage of high selectivity, electron as clean reagent, and minimal chemical usage. However, key factors affecting copper electrodeposition behavior as well as its kinetic process remain unclear, which blocks its further application. In this study, selective copper electrochemical extraction from multi-metal leaching solution of waste liquid crystal display panels is explored. Copper electrodeposition is analyzed from electrochemical and mass transport point of view, and the main results are summarized: (i) copper can be first electrodeposited due to its higher reduction potential compared with indium; (ii) applied potential and agitation are the most influential factors towards space-time yield and current efficiency; (iii) a semi-empirical kinetic model could quantitatively describe the influence of agitation and the time-current-concentration relationship. The model-predicted extraction rate agreed well with experimental data throughout electrodeposition; (iv) electrodeposition experiments show over 95% of copper can be selectively extracted as ultrafine copper powder (~150 nm) at 0.05 V (vs. SHE).

13.
J Hazard Mater ; 404(Pt B): 123947, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33059151

ABSTRACT

A targeted extraction technology for recycling lithium from spent lithium transition metal oxides (LTMO) type batteries is developed in this paper. The chlorinating technology with ammonium chloride as the only additive is employed and controlled to selectively extract lithium. High lithium extraction rate with a low selectivity was first obtained at non-controlled chlorinating conditions. During this process, it was found that the reducing driving force (RDF) played a vital role in metals extraction. Once RDF was controlled at a low level, lithium elements could be targetedly extracted out while other metal elements still remained in the residues. The results showed that 91.73% lithium elements were leached out with a selectivity of 90.04% at the optimal conditions. Further, the mechanism was proposed to explain the release behavior of metals from cathode materials from the perspective of extracting driving force. These principles also offer inspiration for metal selective extraction fields such as metallurgy and recovery of complex systems including multiple metals.

14.
Waste Manag ; 108: 172-182, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32360998

ABSTRACT

The coordinated treatment for two kinds of waste is an effective way to save energy and improve the recovery efficiency of resource. In worldwide, more than half of palladium is used to produce catalysts in automobile. However, with the increasing consumption of palladium, the scarcity of palladium resource is becoming prominent. This paper proposed an integrated process based on capture of copper scrap and electrodeposition process to recycle palladium in spent catalysis from automobile. The technological process mainly consisted of two procedures: capture of copper scrap with the purposes of enriching palladium and electrodeposition process with the purposes of separating and purifying palladium. Several highlights were summarized as follows: (i) a capture mechanism of palladium by copper scrap was studied by the calculation of surface thermodynamics and first principles. (ii) Optimum designs, parameter and product analysis were developed to guide industrial recycling. The appropriate parameters for capture of copper scrap are the melting temperature reached 1400 °C, adding 20% dosage of copper scrap and 2 of mass ratio of SiO2/Al2O3 and for the electrodeposition process, nearly 100% of palladium was deposited on the cathode under 0.1 M concentration of HNO3, -0.042 V of electrodeposition potential and 25 °C reaction temperature with 9 h. (iii) This process overcame the shortages of traditional process and showed its efficiency and environmental performance. This study is significant for high-efficient, low-cost and environment-friendly recycling of valuable resource in spent catalysis from automobile.


Subject(s)
Copper , Palladium , Automobiles , Catalysis , Electroplating , Recycling , Silicon Dioxide
15.
J Hazard Mater ; 388: 122008, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31951988

ABSTRACT

Recycling waste multilayer ceramic capacitors (MLCCs) is significant for environmental protection and resource recovery, which contain rich precious metals including palladium and silver. The existing recycling methods have many shortcomings such as environmental pollution, low recovery efficiency and low purity of precious metals. In view of the special structure of MLCCs and low content of precious metals per unit mass, a novel approach of enrichment for recovering palladium and silver from waste MLCCs by eutectic capture process of copper was proposed, in which process precious metals were separated and enriched for subsequent recovery. The recovery rates of palladium and silver reached 100 % and 87.53 %, respectively under the optimal condition. And the enrichment multiples of palladium and silver were 13.16 and 7.37. The Cu-Pd-Ag alloy was formed in the capture process, of which palladium and copper formed Cu-Pd solid solution, while silver was a separate phase through the analysis of SEM-EDS, XPS and XRD. Besides, the molten residue can be reused to prepare glass-ceramics. Finally, the mechanism was analyzed through thermodynamics, which was divided into two processes: migration of precious metals and alloy formation. This study provides a highly efficient and environmentally friendly method for recycling precious metals from waste MLCCs.

16.
J Hazard Mater ; 381: 120973, 2020 01 05.
Article in English | MEDLINE | ID: mdl-31442689

ABSTRACT

Since indium (In) was the most valuable resource in waste liquid crystal panels (LCDs), most researches only focused on preliminary recovery of In, while those coexisting metal elements (Cu, Sn, Al) raised little concern. This could lead to waste of resources, potential risk of heavy metal pollution, and also complexation of following In purification procedures. Besides, current hydrometallurgy processes for In purification are complicated, consume more reagents and generate more wastewater. Therefore, this research applied simple acid leaching and two-step electrodeposition for In-Sn and In-Cu-Al separation with minimum waste generation and input. Considering the special doping structure of indium-tin oxide (ITO), feasibility for concurrent In leaching and Sn precipitation was explored based on the unique Sn species' dissolution and precipitation behavior during acid leaching. Since the behavior of Sn was more sensitive to acidity and temperature, 97.07% of Sn removal and 99.25% of In recovery could be achieved using 1 mol/L H2SO4 at 70 ℃ for 1 h. A specific kinetic model depicting In leaching in thin ITO film situation was developed referring to avrami equation. Then, the application of two-step electrodeposition enabled 95.32% extraction of Cu and deposition of In with a purity over 99 wt% at respective potential.

17.
Open Access J Sports Med ; 6: 229-39, 2015.
Article in English | MEDLINE | ID: mdl-26244032

ABSTRACT

INTRODUCTION: Vitamin D and the antioxidant quercetin, are promising agents for improving physical performance because of their possible beneficial effects on muscular strength and cardiorespiratory fitness. PURPOSE: The purpose of this study was to determine the effects of increased intakes of vitamin D, quercetin, and their combination on antioxidant status, the steroid hormone regulators of muscle function, and measures of physical performance in apparently healthy male adults engaged in moderate-to-vigorous-intensity exercise training. METHODS: A total of 40 adult male participants were randomized to either 4,000 IU vitamin D/d, 1,000 mg/d quercetin, vitamin D plus quercetin, or placebo for 8 weeks. Measures of cardiorespiratory fitness and muscle function, blood markers for antioxidant and vitamin D status, and hormones 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and testosterone were measured pre- and postsupplementation. RESULTS: At enrollment, 88.6% of participants were vitamin D sufficient (serum 25-hydroxyvitamin D >50 nmol/L) and had normal serum testosterone levels. Supplementation with vitamin D significantly increased serum 25(OH)D concentration (by 87.3% in the vitamin D group, P<0.001) and was associated with an increasing trend of testosterone concentration. There were no changes in concentration of 1,25(OH)2D3 and markers of antioxidant status associated with vitamin D or quercetin supplementation. No improvements in physical performance measures associated with vitamin D and quercetin supplementation were found. CONCLUSION: The findings obtained demonstrate that long-term vitamin D and quercetin supplementation, alone or in combination, does not improve physical performance in male adults with adequate vitamin D, testosterone, and antioxidant status.

18.
Nutr Res ; 35(2): 146-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25530010

ABSTRACT

Vitamin D and calcium are essential for bone formation, mineralization, and remodeling. Recent studies demonstrated that an increased body mass can be detrimental to bone health. However, whether an increase in dietary vitamin D and calcium intakes in obesity is beneficial to bone health has not been established. The aim of this study was to examine the effects of increased vitamin D and calcium intakes, alone or in combination, on bone status in a high-fat diet-induced obesity (DIO) mouse model. We hypothesized that DIO in growing mice affects bone mineral status and that high vitamin D and calcium intakes will promote mineralization of the growing bone in obesity via Ca(2+) regulatory hormones, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and parathyroid hormone (PTH). Male mice were fed high vitamin D3 (10 000 IU/kg), high calcium (1.2%), or high vitamin D3 plus high-calcium diets containing 60% energy as fat for 10 weeks. Bone weight, specific gravity, mineral (Ca and P), and collagen (hydroxyproline) content were measured in the femur and the tibia. Regulators of Ca(2+) metabolism and markers of bone status (PTH, 25-hydroxyvitamin D [25(OH)D], 1,25(OH)2D3, and osteocalcin) were measured in blood plasma. Diet-induced obese mice exhibited lower bone Ca and P content and relative bone weight compared with the normal-fat control mice, whereas collagen (hydroxyproline) content was not different between the two groups. High vitamin D3 and calcium intakes significantly increased bone Ca and P content and relative bone weight in DIO mice, which was accompanied by an increase in 1,25(OH)2D3 and a decrease in PTH and osteocalcin concentrations in blood. The findings obtained indicate that increased vitamin D and calcium intakes are effective in increasing mineral (Ca and P) content in the growing bone of obese mice and that the hormonal mechanism of this effect may involve the vitamin D-PTH axis.


Subject(s)
Bone and Bones/drug effects , Calcium, Dietary/pharmacology , Calcium/metabolism , Cholecalciferol/pharmacology , Diet, High-Fat/adverse effects , Obesity/diet therapy , Phosphorus/metabolism , Animals , Bone and Bones/metabolism , Calcium, Dietary/administration & dosage , Cholecalciferol/administration & dosage , Disease Models, Animal , Drug Therapy, Combination , Hydroxyproline/blood , Male , Mice , Obesity/chemically induced , Obesity/metabolism , Osteocalcin/drug effects , Parathyroid Hormone/blood , Treatment Outcome , Vitamin D/analogs & derivatives , Vitamin D/blood
19.
Mol Nutr Food Res ; 58(6): 1342-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24449427

ABSTRACT

SCOPE: Modulation of apoptosis is emerging as a promising antiobesity strategy because removal of adipocytes through this process will result in reducing body fat. Effects of vitamin D on apoptosis are mediated via multiple signaling pathways that involve common regulators and effectors converging on cellular Ca(2+) . We have previously shown that 1,25-dihydroxyvitamin D3 induces the Ca(2+) signal associated with activation of Ca(2+) -dependent apoptotic proteases in mature adipocytes. In this study, a diet-induced obesity (DIO) mouse model was used to evaluate the role of vitamin D and calcium in adiposity. METHODS AND RESULTS: DIO mice fed high vitamin D3 , high Ca, and high D3 plus high Ca diets demonstrated a decreased body and fat weight gain, improved markers of adiposity and vitamin D status (plasma concentrations of glucose, insulin, adiponectin, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, parathyroid hormone (PTH)), but an increased plasma Ca(2+) . High D3 and Ca intakes were associated with induction of apoptosis and activation of Ca(2+) -dependent apoptotic proteases, calpain and caspase-12, in adipose tissue of DIO mice. The combination of D3 plus Ca was more effective than D3 or Ca alone in decreasing adiposity. CONCLUSION: The results imply that high vitamin D and Ca intakes activate the Ca(2+) -mediated apoptotic pathway in adipose tissue. Targeting this pathway with vitamin D and Ca supplementation could contribute to the prevention and treatment of obesity. However, this potentially effective and affordable approach needs to be evaluated from a safety point of view.


Subject(s)
Adipose Tissue/metabolism , Apoptosis , Calcium, Dietary/administration & dosage , Obesity/blood , Vitamin D/administration & dosage , Adipocytes/cytology , Adiponectin/blood , Adiposity , Animals , Biomarkers/blood , Blood Glucose/metabolism , Body Weight , Calcium, Dietary/blood , Calpain/metabolism , Caspase 12/metabolism , Diet , Dose-Response Relationship, Drug , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Vitamin D/blood
20.
Nutr Res Rev ; 25(1): 130-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22588363

ABSTRACT

New and more effective nutritional measures are urgently needed for the prevention of obesity. The role of Ca and vitamin D in obesity has been recently implicated. Low Ca intake and low vitamin D status have been linked with an increased risk of obesity in epidemiological studies; however, clinical intervention trials designed to test this association have produced controversial results. The suggested anti-obesity mechanisms of Ca and vitamin D include the regulation of adipocyte death (apoptosis), adipogenesis and lipid metabolism. Dietary Ca has been also shown to increase faecal fat excretion. The potential role of Ca and vitamin D in shifting energy balance towards a more negative state is an area of considerable interest. Ultimately, a review of recent research findings does not allow the reaching of a definitive conclusion that increasing Ca intake and rising vitamin D status will influence fat mass and body weight or decrease the risk of obesity and overweight.


Subject(s)
Adipocytes/drug effects , Body Composition/drug effects , Calcium, Dietary/therapeutic use , Dietary Fats/metabolism , Energy Metabolism/drug effects , Obesity/prevention & control , Vitamin D/therapeutic use , Adipogenesis/drug effects , Adipose Tissue/drug effects , Apoptosis/drug effects , Body Weight/drug effects , Calcium, Dietary/pharmacology , Diet , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Obesity/etiology , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...