Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mikrochim Acta ; 191(7): 404, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888740

ABSTRACT

The unprecedented navigation ability in micro/nanoscale and tailored functionality tunes micro/nanomotors as new target drug delivery systems, open up new horizons for biomedical applications. Herein, we designed a light-driven rGO/Cu2 + 1O tubular nanomotor for active targeting of cancer cells as a drug delivery system. The propulsion performance is greatly enhanced in real cell media (5% glucose cells isotonic solution), attributing to the introduction of oxygen vacancy and reduced graphene oxide (rGO) layer for separating photo-induced electron-hole pairs. The motion speed and direction can be readily modulated. Meanwhile, doxorubicin (DOX) can be loaded quickly on the rGO layer because of π-π bonding effect. The Cu2 + 1O matrix in the tiny robots not only serves as a photocatalyst to generate a chemical concentration gradient as the driving force but also acts as a nanomedicine to kill cancer cells as well. The strong propulsion of light-driven rGO/Cu2 + 1O nanomotors coupled with tiny size endow them with active transmembrane transport, assisting DOX and Cu2 + 1O breaking through the barrier of the cell membrane. Compared with non-powered nanocarrier and free DOX, light-propelled rGO/Cu2 + 1O nanomotors exhibit greater transmembrane transport efficiency and significant therapeutic efficacy. This proof-of-concept nanomotor design presents an innovative approach against tumor, enlarging the list of biomedical applications of light-driven micro/nanomotors to the superficial tissue treatment.


Subject(s)
Copper , Doxorubicin , Graphite , Light , Copper/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Graphite/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Drug Carriers/radiation effects , Cell Survival/drug effects , Drug Liberation , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor
2.
Chem Asian J ; 19(7): e202301137, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38285022

ABSTRACT

We presented a NIR-driven Janus Cu2O/Au nanomotor. The nanomotor has a truncated octahedral structure. By asymmetric Au evaporation, the light response range of Cu2O nanomotor is extended to near-infrared range, and the speed of Cu2O/Au nanomotors under NIR is significantly increased. In promoting apoptosis of hepatocellular carcinoma, except the nanotoxicity of Cu2O itself, the Au layer enhances the photothermal properties, allowing Cu2O/Au nanomotors to induce apoptosis in hepatocellular carcinoma cells by heating them. On the other hand, a Schottky barrier formed at the interface of Cu2O and Au, preventing the recombination of electrons, which makes more electrons react with biomolecules to produce toxic ROS to kill hepatocellular cells. The killing rate of hepatocellular carcinoma cells reached 87 % by the combined effect of nanotoxicity inhibition of proliferation and photothermal & photodynamic therapy (PTT & PDT). Nanomotors in combination with multiple approaches are explored as a new treatment to tumor in this article.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Neoplasms/therapy , Cell Line , Liver Neoplasms/drug therapy
3.
Nanoscale ; 15(38): 15573-15582, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37641947

ABSTRACT

Combination therapy is an emerging strategy to overcome multidrug resistance (MDR) in hepatocellular carcinoma (HCC) chemotherapy treatment. However, the passive diffusion in traditional delivery systems greatly retards the approach and penetration of drugs into hepatocellular carcinoma cells and thus hinders the efficacy of combination therapy. Micro/nanomotors with autonomous locomotion in a tiny scale provide the possibility of tackling this issue. Herein, an active drug delivery micromotor platform delicately designed to load drugs with different physicochemical properties and enhance the drug permeability of cells is demonstrated for HCC chemotherapy treatment. The biocompatible micromotor platform Mg/PLGA/CHI comprised magnesium (Mg) coated with two polymer layers made of poly(lactic-co-glycolic acid) (PLGA) and chitosan (CHI), where the hydrophobic and hydrophilic drugs doxorubicin (Dox) and Curcumin (Cur) were loaded, respectively. The autonomous motion of the micromotors with velocity up to 45 µm s-1 greatly enhanced the diffusion of chemotherapeutic drugs and led to higher extracellular and intracellular drug distribution. Moreover, hydrogen produced during the motion eliminated the excess reactive oxygen species (ROS) in the human hepatocellular carcinoma (HepG2) cells. Compared with inert groups, the absorption of Dox and Cur from the active micromotors was about 2.9 and 1.5 times higher in human hepatocellular carcinoma (HepG2) cells. In addition, the anti-tumor activity also obviously improved at the micromotor concentration of 1 mg mL-1 (cell proliferation was reduced by almost 30%). Overall, this work proposes an approach based on loading different chemotherapy agents on an active delivery system to enhance drug permeability and overcome MDR and provides a potentially effective therapeutic strategy for the treatment of HCC.

4.
Front Oncol ; 12: 1014997, 2022.
Article in English | MEDLINE | ID: mdl-36531058

ABSTRACT

With the development of technologies, multiple primary lung cancer (MPLC) has been detected more frequently. Although large-scale genomics studies have made significant progress, the aberrant gene mutation in MPLC is largely unclear. In this study, 141 and 44 lesions from single and multiple primary lung adenocarcinoma (SP- and MP-LUAD) were analyzed. DNA and RNA were extracted from formalin-fixed, paraffin-embedded tumor tissue and sequenced by using the next-generation sequencing-based YuanSu450TM gene panel. We systematically analyzed the clinical features and gene mutations of these lesions, and found that there were six genes differently mutated in MP-LUAD and SP-LUAD lesions, including RBM10, CDK4, ATRX, NTRK1, PREX2, SS18. Data from the cBioPortal database indicated that mutation of these genes was related to some clinical characteristics, such as TMB, tumor type, et al. Besides, heterogeneity analysis suggested that different lesions could be tracked back to monophyletic relationships. We compared the mutation landscape of MP-LUAD and SP-LUAD and identified six differentially mutated genes (RBM10, CDK4, ATRX, NTRK1, PREX2, SS18), and certain SNV loci in TP53 and EGFR which might play key roles in lineage decomposition in multifocal samples. These findings may provide insight into personalized prognosis prediction and new therapies for MP-LUAD patients.

5.
Heliyon ; 8(10): e10866, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36217463

ABSTRACT

Background: Amino acid metabolism participates in forming immunosuppressive tumor microenvironment. Amino acid transporters (AATs), as a gate for admission, remains to be studied. Materials and methods: We identified LUAD-specific prognostic AATs, SLC7A5 by differential expression analysis, logistic regression, machine learning, Kaplan-Meier analysis, AUC value filtrating and Cox regression. Then differential expression and distribution of SLC7A5 were depicted. Copy number variation, DNA methylation, transcriptional factors and ceRNA network were investigated to explore potential mechanism causing differential expression. The prognostic and clinical relation were evaluated by Kaplan-Meier analysis, Cox regression analysis. GSEA and GSVA were used to analyze altered pathways between SLC7A5 high- and low-groups. The expression of HLA-related genes and immune checkpoint genes, and immune cells infiltration were detected. SLC7A5 expression in immune cells was evaluated by single-cell sequencing data. IPS and an independent immunotherapy cohort assessed response rates of patients with distinct SLC7A5 expression. Proliferation assay and wound healing assay validated the effects of SLC7A5 on proliferation and migration of LUAD cells. Western blotting and cell viability assays were performed to detect mTORC1 pathway activity and sensitivity to rapamycin. Results: SLC7A5 was a LUAD-specific prognostic AAT and had significant differential expression in transcription and translation level. Methylation levels of cg00728300, cg00858400, cg12408911, cg08710629 were negative correlation with SLC7A5 expression. FOXP3 and TFAP2A were possible transcription factors and miR-30a-5p, miR-184, miR-195-5p may target SLC7A5 mRNA. SLC7A5 high-expression indicated poor prognosis and was an independent prognostic factor. mTORC1, cell cycle, DNA damage repair, response to reactive oxygen, angiogenesis, epithelial-mesenchymal transition (EMT) and various growth factors signaling pathways were activated in SLC7A5 high-expression group. Interestingly, SLC7A5 high-expression group had less immune-related genes expression and immune cells infiltration. Single-cell sequencing data also suggested SLC7A5 was downregulated in various T cells, especially effector T cells. Moreover, high SLC7A5 expression indicated poor immunotherapy efficacy and higher sensitivity to inhibitors of mTORC1 pathway, cell cycle and angiogenesis. SLC7A5 deficiency abrogated proliferation, migration and mTORC1 pathway activity. Conclusions: In summary, as a LUAD-specific prognostic AAT, SLC7A5 is involved in activation of multiple oncogenic pathways and indicates poor prognosis. Moreover, SLC7A5 may participate in forming immunosuppressive TME and is associated with low response of immunotherapy. SLC7A5 is promising to be a new diagnostic and prognostic biomarker and therapeutic target in LUAD.

6.
Front Oncol ; 12: 883543, 2022.
Article in English | MEDLINE | ID: mdl-35530343

ABSTRACT

Background: There is increasing incidence of pulmonary nodules due to the promotion and popularization of low-dose computed tomography (LDCT) screening for potential populations with suspected lung cancer. However, a high rate of false-positive and concern of radiation-related cancer risk of repeated CT scanning remains a major obstacle to its wide application. Here, we aimed to investigate the clinical value of a non-invasive and simple test, named the seven autoantibodies (7-AABs) assay (P53, PGP9.5, SOX2, GAGE7, GUB4-5, MAGEA1, and CAGE), in distinguishing malignant pulmonary diseases from benign ones in routine clinical practice, and construct a neural network diagnostic model with the development of machine learning methods. Method: A total of 933 patients with lung diseases and 744 with lung nodules were identified. The serum levels of the 7-AABs were tested by an enzyme-linked Immunosorbent assay (ELISA). The primary goal was to assess the sensitivity and specificity of the 7-AABs panel in the detection of lung cancer. ROC curves were used to estimate the diagnosis potential of the 7-AABs in different groups. Next, we constructed a machine learning model based on the 7-AABs and imaging features to evaluate the diagnostic efficacy in lung nodules. Results: The serum levels of all 7-AABs in the malignant lung diseases group were significantly higher than that in the benign group. The sensitivity and specificity of the 7-AABs panel test were 60.7% and 81.5% in the whole group, and 59.7% and 81.1% in cases with early lung nodules. Comparing to the 7-AABs panel test alone, the neural network model improved the AUC from 0.748 to 0.96 in patients with pulmonary nodules. Conclusion: The 7-AABs panel may be a promising method for early detection of lung cancer, and we constructed a new diagnostic model with better efficiency to distinguish malignant lung nodules from benign nodules which could be used in clinical practice.

7.
J Clin Pathol ; 74(5): 314-320, 2021 May.
Article in English | MEDLINE | ID: mdl-32817175

ABSTRACT

BACKGROUND: The absence of high-quality next-generation sequencing (NGS) reference material (RM) has impeded the clinical use of liquid biopsies with plasma cell-free DNA (cfDNA) in China. OBJECTIVE: This study aimed to develop a national RM panel for external quality assessment and performance evaluation during kit registration of non-small-cell lung cancer (NSCLC)-related Kirsten rat sarcoma viral oncogene (KRAS)/neuroblastoma ras oncogene (NRAS)/epidermal growth factor receptor (EGFR)/B-type Raf kinase (BRAF)/mesenchymal-epithelial transition factor (MET) genetic assays using plasma circulating tumor DNA (ctDNA). METHODS: Mutation cell lines detected by NGS and validated by Sanger sequencing were selected to establish the RM. Cell line genomic DNA was sheared and used to spike basal plasma cfDNA at 10% concentration. Then, the calibration accuracy was determined by four sequencing platforms. Average values were adopted and diluted to 0.1%, 0.3%, 1% and 3% concentrations with basal plasma as the RM panel. Then, five manufacturers were invited to evaluate the performance of the RM panel. RESULTS: 20 cell lines with 23 clinically important mutations were selected, including six mutations in KRAS, two mutations in NRAS, three in BRAF, four in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), six in EGFR, one EGFR Gain (4-5 copy) and one MET Gain (2-5 copy). The RM panel consisted of 87 samples, including these 21 mutations at four concentrations (0.1%, 0.3%, 1% and 3%), one MET gain, one EGFR gain and one wild type. The detection rate was 100% for the 3%, 1% and 0.3% samples at all five companies. For the 0.1% concentration, 15 samples had inconsistent results, but at least three companies had correct results for each mutation. CONCLUSION: RM for a KRAS/NRAS/EGFR/BRAF/MET mutation panel for plasma ctDNA was developed, which will be essential for quality control of the performance of independent laboratories.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , DNA Mutational Analysis/standards , GTP Phosphohydrolases/genetics , High-Throughput Nucleotide Sequencing/standards , Lung Neoplasms/genetics , Membrane Proteins/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Beijing , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Cell Line, Tumor , Circulating Tumor DNA/blood , ErbB Receptors/blood , ErbB Receptors/genetics , Female , GTP Phosphohydrolases/blood , Humans , Liquid Biopsy/standards , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Male , Membrane Proteins/blood , Middle Aged , Predictive Value of Tests , Proto-Oncogene Proteins B-raf/blood , Proto-Oncogene Proteins c-met/blood , Proto-Oncogene Proteins p21(ras)/blood , Reference Standards , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...