Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36901319

ABSTRACT

Spartina alterniflora is considered an invasive species that has affected the biogeochemical circle of carbon in coastal wetlands around the world. Nevertheless, it is still unclear how S. alternation invasion affects the carbon storage capacity of coastal wetlands as carbon pools through bacterial changes. Herein, bacterial communities and soil carbon content in coastal wetland native areas and S. alterniflora invasion areas were detected. It was found that an S. alterniflora invasion brought more organic carbon and resulted in the increase in Proteobacteria in bare flats and Sueada salsa areas. When decomposition capacity was not sufficient, large amounts of organic carbon may be stored in specific chemical forms, such as monosaccharides, carboxylic acids, alcohols, etc. The results have also shown that soil bacterial communities were highly similar between the bare flat and S. alterniflora invasion area, which is extremely conducive to the rapid growth of S. alterniflora. However, an S. alterniflora invasion would decrease total carbon contents and inorganic carbon contents in the Sueada salsa area. This is not conducive to the stability of the soil carbon pool and soil health. These findings may complement, to some extent, the shortcomings of the interaction between S. alterniflora and bacterial communities, and their joint effect on soil carbon storage.


Subject(s)
Soil , Wetlands , Soil/chemistry , Carbon/analysis , Poaceae , Introduced Species , Bacteria , China
2.
Article in English | MEDLINE | ID: mdl-36833491

ABSTRACT

In order to address the growing problem of water pollution caused by the excessive discharge of contaminants and provide a better aquatic ecosystem for the public, increasing attention has been paid to the harmlessness and efficiency of coagulation. In this study, polyaluminum lanthanum silicate (PALS) was synthesized through co-polymerization as a novel coagulant to treat wastewater. FTIR, XRD, and SEM were used to analyze the morphology and structure of the material, which further confirmed that the PALS was successfully synthesized. The results indicated that PALS had a great performance in the treatment of a kaolin-humic acid suspension under the optimal synthesis conditions with Al/Si = 3, La/Si = 0.1, and basicity = 0.7. Compared with conventional coagulants, PALS exhibited a better performance at a low coagulant dose and could achieve a good removal effect for an ultraviolet wavelength less than 254 nm (UV254) (83.87%), residual turbidity (0.49 NTU), and dissolved organic carbon (DOC) (69.57%) at the optimal conditions. Additionally, the PALS showed a better effect on phosphate removal than other coagulants did, where the removal efficiency could reach 99.60%. Charge neutralization and adsorption bridging were the potential wastewater treatment mechanisms employed by the PALS, which showed varied contributions under different pH levels. The results indicated that PALS can be a promising coagulant in water treatment.


Subject(s)
Lanthanum , Water Purification , Ecosystem , Wastewater , Silicates , Kaolin , Water Purification/methods , Flocculation
3.
J Environ Manage ; 330: 117244, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36621311

ABSTRACT

Global climate change has led to an increase in both the frequency and magnitude of extreme events around the world, the risk of which is especially imminent in tropical regions. Developing hydrological models with better capabilities to simulate streamflow, especially peak flow, is urgently needed to facilitate water resource planning and management as well as climate change mitigation efforts in the tropics. In view of the need, this paper explores the feasibility of improving streamflow simulation performance in the tropical Kelantan River Basin (KRB) of Peninsular Malaysia through coupling a conceptual process-based hydrological model - Soil and Water Assessment Tool (SWAT) with a deep learning model - Bidirectional Long Short-Term Memory (Bi-LSTM) in two ways. All SWAT parameters were set as their default values in one hybrid model (SWAT-D-LSTM), whereas three most sensitive SWAT parameters were calibrated in the other hybrid model (SWAT-T-LSTM). Comparison of daily streamflow simulation results have shown that SWAT-T-LSTM consistently performs better than SWAT-D-LSTM as well as the stand-alone SWAT and Bi-LSTM model throughout the simulation period. Particularly, SWAT-T-LSTM performs considerably better than the other three models in simulating daily peak flow. Based on the latest projection results of five GCMs from the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) under three emission scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), the best-performed SWAT-T-LSTM was run to assess the potential impacts of climate change on streamflow in the KRB. Ensemble assessment results have concluded that both average and extreme streamflow is much likely to increase considerably in the already wet northeast monsoon season from November to January, which has surely raised the alarm for more frequent flood occurrence in the KRB.


Subject(s)
Climate Change , Soil , Rivers , Water , Models, Theoretical
4.
Sci Total Environ ; 861: 160603, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36464049

ABSTRACT

In this study, the mechanism of magnetic P-inactivating material on cyanobacterial bloom control was investigated by adding magnetic lanthanum-based material (MLC-10) in different stages of cyanobacterial growth during a 30-day cultivation experiment. The results showed that adding MLC-10 could rapidly reduce the available phosphorus, achieve phosphorus limitation in water body, and inhibit cyanobacterial blooms in the water column. In particular, the addition of MLC-10 at the early stage of cyanobacterial growth (day 0) achieved 97.5% bloom control. Additionally, cyanobacteria was captured and precipitated by MLC-10, and the floating ability of cyanobacteria was reduced. The results of antioxidant enzyme activities showed that adding MLC-10 may cause damage to the activity of cyanobacteria and induce stress response of cyanobacterial cells, which increased with increasing of exposure time. Besides, the results of metabolomics further suggested that adding MLC-10 mainly affected the amino acid metabolism, lipid metabolism and tRNA synthesis of cyanobacteria, which lead to the damage to cells' activities and membrane transport. These results provide insight into the mechanism of MLC-10 as a magnetic P-inactivating material on cyanobacterial bloom control.


Subject(s)
Cyanobacteria , Lanthanum , Eutrophication , Phosphorus , Water , Magnetic Phenomena , Lakes/microbiology
5.
Sci Total Environ ; 864: 160974, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36563757

ABSTRACT

Humic substances are widely present in aquatic environments. Due to the high affinity of humic substances for metals, the interactions have been particularly studied. To assess the effect of humic acid (HA) on submerged macrophytes and biofilms exposed to heavy metal stress, Vallisneria natans was exposed to solutions containing different concentrations of HA (0.5-2.0 mg·L-1), Pb2+ (1 mg·L-1) and Cd2+ (1 mg·L-1). Results suggested that HA positively affected the plant growth and alleviated toxicity by complexing with metals. HA increased the accumulation of metals in plant tissues and effectively induced antioxidant responses and protein synthesis. It was also noted that the exposure of HA and metals promoted the abundance and altered the structure of microbial communities in biofilms. Moreover, the positive effects of HA were considered to be related to the expression of related genes resulting from altered DNA methylation levels, which were mainly reflected in the altered type of demethylation. These results demonstrate that HA has a protective effect against heavy metal stress in Vallisneria natans by inducing effective defense mechanisms, altering biofilms and DNA methylation patterns in aquatic ecosystems.


Subject(s)
Hydrocharitaceae , Metals, Heavy , Microbiota , Humic Substances/analysis , Cadmium/metabolism , Lead/toxicity , Lead/metabolism , Metals, Heavy/metabolism , Hydrocharitaceae/metabolism
6.
Chemosphere ; 275: 130017, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33652276

ABSTRACT

Magnetite/lanthanum hydroxide composite (MLC-10) was applied in simulate natural water, sediment and cyanobacteria (WSC) system to evaluate its effect on cyanobacterial bloom in this study. According to the results, the addition of MLC-10 showed a good performance on inhibition of cyanobacterial bloom in systems. The cyanobacteria density of WSC-0.5 and WSC-1.0 (adding 0.5 g and 1.0 g MLC-10) at 30 day was 99.39% and 99.84% less than that in WSC-C (adding no MLC-10 in WSC system), respectively. The addition of MLC-10 could form a phosphorus-binding layer that adsorbed soluble reactive phosphate (SRP) in overlying water, improved the release of internal phosphorus (P) from sediment to pore water then blocked SRP release from pore water to overlying water, especially in WSC-0.5 and WSC-1.0. The results may be due to the high adsorption capacity of MLC-10 to phosphorus. Additionally, oxidative stress and oxidative damage of cyanobacteria were observed after exposing to MLC-10, and oxidative damage degree increased with the elevated amount of MLC-10. MLC-10 addition showed a slight effect on microbial community of surface sediment. Phosphorus limitation, cell damage and limited cells' floating performance were the possible mechanisms of cyanobacterial bloom controlling by MLC-10. Based on these results, MLC-10 could be used as a potential P-inactive material for cyanobacterial bloom controlling.


Subject(s)
Cyanobacteria , Ferrosoferric Oxide , Eutrophication , Lakes , Lanthanum , Phosphorus
7.
Aquat Toxicol ; 225: 105515, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32516672

ABSTRACT

Heavy metals can cause a significant damage to submerged macrophytes and affect its periphyton biofilms in aquatic environments. This study investigated the effects of heavy metals such as copper (Cu), lead (Pb), cadmium (Cd) and their mixture on physiological and biochemical responses and ultrastructure characteristics of Vallisneria natans (V. natans). Furthermore, differences in structures of microbial communities were observed in biofilms. The results showed that Cu2+, Pb2+, Cd2+ and their mixture could destroy cell structure and photosynthetic system, and directly caused oxidative damage to submerged macrophyte and induced antioxidant enzyme system. In general, biomass and total chlorophyll content of V. natans noticeably decreased, while the activities of superoxide dismutase, peroxidase and catalase were enhanced by heavy metal stress inducement in restricted range, and the malondialdehyde content increased with the aggravation of the damage. The single heavy metal stress played a negative impact, however, the combined stress was not always synergistic effects on plants. High-throughput sequencing analysis suggested that heavy metals changed the abundance and structure of the microbial biofilm community. Proteobacteria and Bacteroidete were the dominant bacteria under heavy metal stress and other species and abundance of bacteria such as Firmicute, Cyanobacteria, Chloroflexi, Actinobacteria, Verrucomicrobia, Acidobacteria, Deinococcus-Thermus, Chlamydiae were also present. These findings provided useful information for further understanding about submerged macrophytes and periphyton biofilms responsed to heavy metal stress in aquatic environments in the future.


Subject(s)
Biofilms/drug effects , Hydrocharitaceae/drug effects , Metals, Heavy/toxicity , Microbiota/drug effects , Water Pollutants, Chemical/toxicity , Antioxidants/metabolism , Biofilms/growth & development , Biomass , Chlorophyll/metabolism , Cyanobacteria/drug effects , Cyanobacteria/growth & development , Drug Synergism , Firmicutes/drug effects , Firmicutes/growth & development , Hydrocharitaceae/microbiology , Hydrocharitaceae/ultrastructure , Malondialdehyde/metabolism , Periphyton/drug effects , Photosynthesis/drug effects
8.
Sci Total Environ ; 723: 137838, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32217398

ABSTRACT

Two magnetic adsorbents, magnetite/aluminum hydroxide composite (MAC) and magnetite/lanthanum hydroxide composite (MLC), were successfully synthesized by a simple one-pot method and their phosphate adsorption process was investigated. The properties of synthesized adsorbents were studied using Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). The adsorption isotherms, adsorption kinetics and the effects of solution pH and dissolved organic carbon (DOC) on the adsorption of phosphate in aqueous solution by MAC, MLC-2, MLC-10 and LMB were investigated to evaluate the difference in phosphate removal efficiency of the magnetic adsorbents and non-magnetic adsorbent. According to the results of this study, MLC-10 had a higher phosphate adsorption capacity (19.34 mg P g-1) than LMB (11.55 mg P g-1), MAC (10.48 mg P g-1) and MLC-2 (8.89 mg P g-1). MLC-10 showed a relative higher partition coefficient (PC) (1.74 mg g-1 µM-1) than other three adsorbents at initial P concentration of 15 mg L-1. Also, MLC-10 was less pH dependent than MAC and had higher phosphate adsorption capacities under different DOC concentrations (0-72 mg L-1) than LMB, MAC and MLC-2. Further, MLC-10 had excellent recyclability due to high magnetism. Electrostatic interaction and the inner-sphere surface complexation were the potential phosphate adsorption mechanisms employed by MLC-10. In summary, MLC-10 is a promising adsorbent for phosphate removal from eutrophication water.

SELECTION OF CITATIONS
SEARCH DETAIL
...