Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2402038, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810152

ABSTRACT

The strong potential of platinum single atom (PtSA) in gas sensor technology is primarily attributed to its high atomic economy. Nevertheless, it is imperative to conduct further exploration to understand the impact of PtSA on the active sites. In this study, the evolution of PtSA on (100)CeO2 and (111)CeO2 is examined, revealing notable disparities in the position and activity of surface PtSA on different crystal planes. The PtSA in (100)CeO2 surface can enhance the stability of Ce3+ and construct a frustrated Lewis pair (FLP) to form a double active site by combining the steric hindrance effect of oxygen vacancies, which increases the response value from 1.8 to 27 and reduce the response-recovery time from 140-192 s to 25-26 s toward five ppm NO2 at room temperature. Conversely, PtSA tends to bind to terminal oxygen on the surface of (111)CeO2 and become an independent reaction site. The response value of PtSA-(111)CeO2 surface only increased from 1.6 to 3.8. This research underscores the correlation between single atoms and crystal plane effects, laying the groundwork for designing and synthesizing ultra-stable and efficient gas sensors.

2.
Adv Mater ; : e2403215, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706406

ABSTRACT

Prolonging energetic hot electrons lifetimes and surface activity in the reactive site can overcome the slow kinetics and unfavorable thermodynamics of photo-activated gas sensors. However, bulk and surface recombination limit the simultaneous optimization of both kinetics and thermodynamics. Here tandem electric fields are deployed at (111)/(100)Au-CeO2 to ensure a sufficient driving force for carrier transfer and elucidate the mechanism of the relationship between charge transport and gas-sensing performance. The asymmetric structure of the (111)/(100)CeO2 facet junction provides interior electric fields, which facilitates electron transfer from the (100)face to the (111)face. This separation of reduction and oxidation reaction sites across different crystal faces helps inhibit surface recombination. The increased electron concentration at the (111)face intensifies the interface electric field, which promotes electron transfer to the Au site. The local electric field generated by the surface plasmon resonance effect promotes the generation of high-energy energy hot-electrons, which maintains charge concentration in the interface field by injecting into (111)/(100)CeO2, thereby provide thermodynamic contributions and inhibit bulk recombination. The tandem electric fields enable the (111)/(100)Au-CeO2 to rapidly detect 5 ppm of NO2 at room temperature with stability maintained within 20 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...