Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Regen Med ; 20(5): 753-766, 2023 08.
Article in English | MEDLINE | ID: mdl-37219820

ABSTRACT

BACKGROUND: Our previous studies found that the mechanical stimulation promote chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), along with up-regulation of thrombospondin-2 (TSP-2). The aim of this study was to explore the effect of thrombospondin-2 (TSP-2) on the mechanical pressure-stimulated chondrogenic differentiation of BMSCs and the possible role of NF-κB signaling in the mechano-chemical coupling regulation toward chondrogenesis. METHODS: Rat BMSCs were isolated, cultured and identified. The time-dependent expressions of TSP-2 and Sox9 in BMSCs under a dynamic mechanical pressure of 0-120 kPa at 0.1 Hz for 1 h were tested by qPCR and Western blotting. The role of TSP-2 in chondrogenic differentiation of BMSCs under mechanical pressure was validated by using small interfering RNA. The impact of TSP-2 and mechanical pressure on chondrogenesis were detected and the downstream signaling molecules were explored using Western blotting. RESULTS: Mechanical pressure stimulation of 0-120 kPa for 1 h significantly upregulated the expression of TSP-2 in BMSCs. The expression of the chondrogenesis markers Sox9, Aggrecan, and Col-II were all upregulated under dynamic mechanical pressure or TSP-2 stimulation. Additional exogenous TSP-2 may potentiate the chondrogenic effect of mechanical stimulation. After knock down TSP-2, the upregulation of Sox9, Aggrecan and Col-II under mechanical pressure was inhibited. The NF-κB signaling pathway responded to both dynamic pressure and TSP-2 stimulation, and the cartilage-promoting effect was blocked by an NF-κB signaling inhibitor. CONCLUSION: TSP-2 plays an essential role in the chondrogenic differentiation of BMSCs under mechanical pressure. NF-κB signaling is involved in the mechano-chemical coupling of TSP-2 and mechanical pressure for the chondrogenic differentiation of BMSCs.


Subject(s)
Chondrogenesis , NF-kappa B , Animals , Rats , Aggrecans/metabolism , Cells, Cultured , Chondrogenesis/genetics , NF-kappa B/metabolism , Signal Transduction , Thrombospondins
SELECTION OF CITATIONS
SEARCH DETAIL
...