Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Singapore Med J ; 65(3): 167-175, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38527301

ABSTRACT

ABSTRACT: The fields of precision and personalised medicine have led to promising advances in tailoring treatment to individual patients. Examples include genome/molecular alteration-guided drug selection, single-patient gene therapy design and synergy-based drug combination development, and these approaches can yield substantially diverse recommendations. Therefore, it is important to define each domain and delineate their commonalities and differences in an effort to develop novel clinical trial designs, streamline workflow development, rethink regulatory considerations, create value in healthcare and economics assessments, and other factors. These and other segments are essential to recognise the diversity within these domains to accelerate their respective workflows towards practice-changing healthcare. To emphasise these points, this article elaborates on the concept of digital health and digital medicine-enabled N-of-1 medicine, which individualises combination regimen and dosing using a patient's own data. We will conclude with recommendations for consideration when developing novel workflows based on emerging digital-based platforms.


Subject(s)
Delivery of Health Care , Precision Medicine , Humans , Clinical Trials as Topic
2.
J Exp Bot ; 75(3): 819-836, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37936320

ABSTRACT

Fruit ripening and the associated softening are major determinants of fruit quality and post-harvest shelf life. Although the mechanisms underlying fruit softening have been intensively studied, there are limited reports on the regulation of fruit softening in apples (Malus domestica). Here, we identified a zinc finger homeodomain transcription factor MdZF-HD11that trans-activates the promoter of Mdß-GAL18, which encodes a pectin-degradation enzyme associated with cell wall metabolism. Both MdZF-HD11 and Mdß-GAL18 genes were up-regulated by exogenous ethylene treatment and repressed by 1-methylcyclopropene treatment. Further experiments revealed that MdZF-HD11 binds directly to the Mdß-GAL18 promoter and up-regulates its transcription. Moreover, using transgenic apple fruit calli, we found that overexpression of Mdß-GAL18 or MdZF-HD11 significantly enhanced ß-galactosidase activity, and overexpression of MdZF-HD11 induced the expression of Mdß-GAL18. We also discovered that transient overexpression of Mdß-GAL18 or MdZF-HD11 in 'Golden Delicious' apple significantly increased the release of ethylene, reduced fruit firmness, promoted the transformation of skin color from green to yellow, and accelerated ripening and softening of the fruit. Finally, the overexpression of MdZF-HD11 in tomato also promoted fruit softening. Collectively, these results indicate that ethylene-induced MdZF-HD11 interacts with Mdß-GAL18 to promote the post-harvest softening of apple.


Subject(s)
Malus , Malus/metabolism , Fruit/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298249

ABSTRACT

Apple (Malus × domestica Borkh.) is one of the most cultivated fruit crops in China. Apple trees frequently encounter waterlogging stress, mainly due to excess rainfall, soil compaction, or poor soil drainage, results in yellowing leaves and declined fruit quality and yield in some regions. However, the mechanism underlying the response to waterlogging has not been well elucidated. Therefore, we performed a physiological and transcriptomic analysis to examine the differential responses of two apple rootstocks (waterlogging-tolerant M. hupehensis and waterlogging-sensitive M. toringoides) to waterlogging stress. The results showed that M. toringoides displayed more severe leaf chlorosis during the waterlogging treatment than M. hupehensis. Compared with M. hupehensis, the more severe leaf chlorosis induced by waterlogging stress in M. toringoides was highly correlated with increased electrolyte leakage and superoxide radicals, hydrogen peroxide accumulation, and increased stomata closure. Interestingly, M. toringoides also conveyed a higher ethylene production under waterlogging stress. Furthermore, RNA-seq revealed that a total of 13,913 common differentially expressed genes (DEGs) were differentially regulated between M. hupehensis and M. toringoides under waterlogging stress, especially those DEGs involved in the biosynthesis of flavonoids and hormone signaling. This suggests a possible link of flavonoids and hormone signaling to waterlogging tolerance. Taken together, our data provide the targeted genes for further investigation of the functions, as well as for future molecular breeding of waterlogging-tolerant apple rootstocks.


Subject(s)
Malus , Malus/metabolism , Gene Expression Profiling , Fruit , Plant Leaves/metabolism , Hormones/metabolism , Transcriptome , Gene Expression Regulation, Plant , Stress, Physiological/genetics
4.
Plant Biotechnol J ; 21(7): 1465-1478, 2023 07.
Article in English | MEDLINE | ID: mdl-37069831

ABSTRACT

Existing CRISPR/Cas12a-based diagnostic platforms offer accurate and vigorous monitoring of nucleic acid targets, but have the potential to be further optimized for more efficient detection. Here, we profiled 16 Cas12a orthologs, focusing on their trans-cleavage activity and their potential as diagnostic enzymes. We observed the Mb2Cas12a has more robust trans-cleavage activity than other orthologs, especially at lower temperatures. An engineered Mb2Cas12a-RRVRR variant presented robust trans-cleavage activity and looser PAM constraints. Moreover, we found the existing one-pot assay, which simultaneously performed Recombinase Polymerase Amplification (RPA) and Cas12a reaction in one system, resulted in the loss of single-base discrimination during diagnosis. Therefore, we designed a reaction vessel that physically separated the RPA and Cas12a steps while maintaining a closed system. This isolated but closed system made diagnostics more sensitive and specific and effectively prevented contamination. This shelved Mb2Cas12a-RRVRR variant-mediated assay detected various targets in less than 15 min and exhibited equal or greater sensitivity than qPCR when detecting bacterial pathogens, plant RNA viruses and genetically modified crops. Overall, our findings further improved the efficiency of the current CRISPR-based diagnostic system and undoubtedly have great potential for highly sensitive and specific detection of multiple sample types.


Subject(s)
Nucleic Acids , Crops, Agricultural , Plants, Genetically Modified , RNA, Plant , Recombinases/genetics , CRISPR-Cas Systems/genetics
5.
Soft Matter ; 18(35): 6592-6598, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35993171

ABSTRACT

Shear stress is an important index to evaluate the rheological behavior of magnetorheological fluids (MRFs), which is not only related to the properties of ferromagnetic particles, but also the viscosity of the carrier. However, the research related to the carrier viscosity is quite lacking, and the mechanism of its effect on shear stress is still unclear. In this work, the carrier viscosity effect on the microstructure of MRFs under shearing was investigated via numerical simulations, and the relationship between chain inclination and carrier viscosity was presented for the first time. It was found that the deflection angle of the chain increases with the increase of carrier viscosity. Based on the simulation results, the relationship between the shear resistance induced by the magnetic field and the deflection angle of the chain was studied. Finally, a constitutive model incorporating the mechanism of the viscosity effect on shear stress was proposed, and the calculated results agreed well with the experimental data. This work provides new insights into the effect of carrier viscosity and can help us to better understand the corresponding microscopic mechanism.

6.
Carbohydr Polym ; 287: 119347, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35422295

ABSTRACT

Cellulose, a shining star of nano-dimensional self-assembled unit materials, has perfect biocompatibility, mechanical toughness, low density, and powerful modification potential characteristics, all of which make cellulose and its derivatives gained wide attention in various applications, especially for the expanding market for microwave absorption (MA) and electromagnetic interference (EMI) shielding. In this paper, the latest research progresses of cellulose and its derivatives in MA and EMI shielding, including the state-of-the-art design concepts, synthetic strategies, and electromagnetic characters, were summarized. Different types of cellulose-based electromagnetic components have been classified according to their electromagnetic mechanism of action (shielding or absorption), filler properties (dielectric, magnetic or electrical conductivity), and structural expression (film or aerogel). The benefits stemming from its applications are analyzed, providing novelties and unique perspectives for relevant research. Finally, the main obstacles and bottlenecks for further applications were analyzed, and the trend and prospects of cellulose material's future research were proposed.


Subject(s)
Cellulose , Microwaves , Cellulose/chemistry , Electric Conductivity , Electromagnetic Phenomena , Magnetics
7.
J Hazard Mater ; 426: 128038, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34953258

ABSTRACT

Pre-planting testing of seeds and plantlets for the existence of quarantine pathogens is an important phytosanitary measure. The CRISPR-mediated molecular diagnostic methodologies are being developed for pathogens detection, but many challenges remain. Here, we profiled an engineered Crispr/LbCas12a variant (LbCas12a-5M) that has more robust trans-cleavage activity and a wider PAM sequences (TNTN) preference than wild type. We developed a procedure for screening specific sequences of bacterial plant pathogens, and the designed species-specific crRNA displayed no cross-reactions with other bacterial species. Combined with a simple extraction of bacterial DNA, an LbCas12a-5M-based visual detection technique was established and optimized for detecting quarantine pathogens Erwinia amylovora and Acidovorax citrulli with detection limits up to 40 CFU/reaction and a sensitivity consistent with qPCR assay. This protocol was faster and simpler than qPCR, requiring 40 min or less from sample preparation. We further validated the potential application of the method by showing that it can be used for rapid and accurate diagnosis of A. citrulli on seeds of watermelon, with 100% agreement with the results of qPCR assay. The developed method simplifies the detection of pathogens and provides cost-effective countermeasures to quarantine interventions.


Subject(s)
Citrullus , Quarantine , Crops, Agricultural , DNA, Bacterial/genetics , Real-Time Polymerase Chain Reaction
8.
Front Genet ; 12: 746392, 2021.
Article in English | MEDLINE | ID: mdl-34868217

ABSTRACT

Melatonin acts both as an antioxidant and as a growth regulatory substance in plants. Pseudomonas fluorescens endophytic bacterium has been shown to produce melatonin and increase plant resistance to abiotic stressors through increasing endogenous melatonin. However, in bacteria, genes are still not known to be melatonin-related. Here, we reported that the bacterial phenylalanine 4-hydroxylase (PAH) may be involved in the 5-hydroxytryptophan (5-HTP) biosynthesis and further influenced the subsequent production of melatonin in P. fluorescens. The purified PAH protein of P. fluorescens not only hydroxylated phenylalanine but also exhibited l-tryptophan (l-Trp) hydroxylase activity by converting l-Trp to 5-HTP in vitro. However, bacterial PAH displayed lower activity and affinity for l-Trp than l-phenylalanine. Notably, the PAH deletion of P. fluorescens blocked melatonin production by causing a significant decline in 5-HTP levels and thus decreased the resistance to abiotic stress. Overall, this study revealed a possible role for bacterial PAH in controlling 5-HTP and melatonin biosynthesis in bacteria, and expanded the current knowledge of melatonin production in microorganisms.

9.
J Colloid Interface Sci ; 594: 460-465, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33774401

ABSTRACT

Graphene quantum dots (GQDs) are attractive fluorescent nanoparticles that have wide applicability, are inexpensive, nontoxic, photostable, water-dispersible, biocompatible and environmental-friendly. Various strategies for the synthesis of GQDs have been reported. However, simple and efficient methods of producing GQDs with control over the size of the GQDs, and hence their optical properties, are sorely needed. Herein, an ultra-fast and efficient laser writing technique is presented as a means to produce GQDs with homogeneous size from graphene produced by the instantaneous photothermal gasification and recrystallization mechanism. Controlling the laser scan speed and output power, the yield of GQDs can reach to be about 31.458 mg/s, which shows promising potential for large-scale production. The entire process eliminates the need for chemical solvents or any other reagents. Notably, the prepared laser writing produced GQDs (LWP-GQDs) exhibit blue fluorescence under UV irradiation of 365 nm and the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates is measured at (0.1721, 0.123). Overall, this method exhibits superior advantages over the complex procedures and low yields required by other existing methods, and thus has great potential for the commercial applications.

10.
Plant Biotechnol J ; 19(2): 394-405, 2021 02.
Article in English | MEDLINE | ID: mdl-32886837

ABSTRACT

Co-infection of apple trees with several viruses/viroids is common and decreases fruit yield and quality. Accurate and rapid detection of these viral pathogens helps to reduce losses and prevent virus spread. Current molecular detection assays used for apple viruses require specialized and expensive equipment. Here, we optimized a CRISPR/Cas12a-based nucleic acid detection platform for the diagnosis of the most prevalent RNA viruses/viroid in apple, namely Apple necrotic mosaic virus (ApNMV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV), Apple chlorotic leaf spot virus (ACLSV) and Apple scar skin viroid (ASSVd). We detected each RNA virus/viroid directly from crude leaf extracts after simultaneous multiplex reverse transcription-recombinase polymerase amplification (RT-RPA) with high specificity. Positive results can be distinguished by the naked eye via oligonucleotide-conjugated gold nanoparticles. The CRISPR/Cas12a-RT-RPA platform exhibited comparable sensitivity to RT-qPCR, with limits of detection reaching 250 viral copies per reaction for ASPV and ASGV and 2500 copies for the others. However, this protocol was faster and simpler, requiring an hour or less from leaf harvest. Field tests showed 100% agreement with RT-PCR detection for 52 samples. This novel Cas12a-based method is ideal for rapid and reliable detection of apple viruses in the orchard without the need to send samples to a specialized laboratory.


Subject(s)
Metal Nanoparticles , RNA Viruses , Viroids , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gold , Plant Diseases , RNA Viruses/genetics , RNA, Viral/genetics , Sensitivity and Specificity , Viroids/genetics
11.
Front Genet ; 12: 783482, 2021.
Article in English | MEDLINE | ID: mdl-35111199

ABSTRACT

Zinc finger-homeodomain (ZF-HD) transcription factors play an important role in the regulation of plant growth and development, as well as the regulation of stress responses. Studies on the ZF-HD family genes have been conducted in many plants, however, the characteristics of this family in apple (Malus domestica) fruit remains to be poorly understood. In this study, we identified nineteen ZF-HD family genes in apple at the whole-genome scale, which were unevenly located on ten chromosomes. These MdZF-HD genes were phylogenetically divided into two subfamilies: zinc finger-homeodomain (ZHD) and MINI ZINC FINGER (MIF), and the ZHD subfamily was further classified into five groups (ZHDI-ZHDV). Analysis of the gene structures showed that most MdZF-HD genes lack introns. Gene expression analysis indicated that nine selected MdZF-HD genes were differentially responsive to 1-MCP (1-methylcyclopropene) treatment during the postharvest storage of "Qinguan" apple fruit. Moreover, the transcripts of six genes were further validated in "Golden Delicious" apple fruit, and five genes (MdZHD1/2/6/10/11) were significantly repressed and one gene (MdZHD7) was slightly induced by ethylene treatment. These results indicated that these six MdZF-HD genes may involve in the regulation of ethylene induced ripening process of postharvest apple fruit. These findings provide new clues for further functional investigation of ZF-HD genes, such as their roles in the regulation of fruit ripening.

12.
Front Genet ; 11: 609184, 2020.
Article in English | MEDLINE | ID: mdl-33240335

ABSTRACT

Apple (Malus domestica Borkh.), an economically important tree fruit worldwide, frequently suffers from temperature stress during growth and development, which strongly affects the yield and quality. Heat shock protein 20 (HSP20) genes play crucial roles in protecting plants against abiotic stresses. However, they have not been systematically investigated in apple. In this study, we identified 41 HSP20 genes in the apple 'Golden Delicious' genome. These genes were unequally distributed on 15 different chromosomes and were classified into 10 subfamilies based on phylogenetic analysis and predicted subcellular localization. Chromosome mapping and synteny analysis indicated that three pairs of apple HSP20 genes were tandemly duplicated. Sequence analysis revealed that all apple HSP20 proteins reflected high structure conservation and most apple HSP20 genes (92.6%) possessed no introns, or only one intron. Numerous apple HSP20 gene promoter sequences contained stress and hormone response cis-elements. Transcriptome analysis revealed that 35 of 41 apple HSP20 genes were nearly unchanged or downregulated under normal temperature and cold stress, whereas these genes exhibited high-expression levels under heat stress. Subsequent qRT-PCR results showed that 12 of 29 selected apple HSP20 genes were extremely up-regulated (more than 1,000-fold) after 4 h of heat stress. However, the heat-upregulated genes were barely expressed or downregulated in response to cold stress, which indicated their potential function in mediating the response of apple to heat stress. Taken together, these findings lay the foundation to functionally characterize HSP20 genes to unravel their exact role in heat defense response in apple.

13.
Front Plant Sci ; 11: 574881, 2020.
Article in English | MEDLINE | ID: mdl-33178245

ABSTRACT

Adventitious root (AR) formation is indispensable for vegetative asexual propagation. Indole-3-butyric acid (IBA) functioned indirectly as precursor of IAA in regulating AR formation. Ethylene affects auxin synthesis, transport, and/or signaling processes. However, the interactions between auxin and ethylene that control AR formation in apple have not been elucidated. In this study, we investigated the effects of IBA and its interaction with ethylene on AR development in apple. The results revealed that IBA stimulated the formation of root primordia, increased the number of ARs, and upregulated expression of genes (MdWOX11, MdLBD16, and MdLBD29) involved in AR formation. Comparison of different periods of IBA application indicated that IBA was necessary for root primordium formation, while long time IBA treatment obviously inhibited root elongation. RNA-seq analysis revealed that many plant hormone metabolism and signal transduction related genes were differentially expressed. IBA stimulated the production of ethylene during AR formation. Auxin inhibiting ARs elongation depended on ethylene. Together, our results suggest that the inhibitory role of auxin on AR elongation in apples is partially mediated by stimulated ethylene production.

SELECTION OF CITATIONS
SEARCH DETAIL
...